بکارگیری تکنیک های خوشه بندی و الگوریتم ژنتیک در بهینه سازی درختان تصمیم گیری برای اعتبارسنجی مشتریان بانک ها
الموضوعات :محمود البرزی 1 , محمد خان بابایی 2 , محمدابراهیم محمدپور زرندی 3
1 - ندارد
2 - مسئول مکاتبات
3 - ندارد
الکلمات المفتاحية: اعتبارسنجی, طبقه بندی, الگوریتم ژنتیک, درختان تصمیم گیری, انتخاب ویژگی, خوشه بندی,
ملخص المقالة :
درختان تصمیم گیری به عنوان یکی از تکنیک های داده کاوی کاربرد زیادی در اعتبارسنجی مشتریان بانک وشناسایی آن ها برای اعطای تسهیلات اعتباری دارد. مسئله اصلی در پیچیدگی درختان تصمیم گیری، اندازه بیش از حد،عدم انعطاف پذیری و دقت کم در طبقه بندی است. هدف از این مقاله ارائه مدل ترکیبی در بهینه سازی درختان تصمیمگیری توسط تکنیک الگوریتم ژنتیک به منظور حل مسائل ذکر شده در فوق برای اعتبارسنجی مشتریان بانک است. بهنظر می رسد بتوان با انتخاب ویژگی های مناسب و ساخت درختان تصمیم گیری توسط الگوریتم ژنتیک به کاهشپیچیدگی و افزایش انعطاف پذیری درختان تصمیم گیری پرداخت. در مدل ترکیبی پیشنهادی ابتدا داده های اعتباریتوسط تکنیک خوشه بندیSimpleKmeansبه دو خوشه تقسیم می شوند. سپس با استفاده از الگوریتم ژنتیک، پنجالگوریتم انتخاب ویژگی مبتنی بر سه رویکرد فیلترWrapperو طرح جاسازی شده بر پایه درخت تصمیم گیری ژنتیکی،به انتخاب ویژگی های اعتبارسنجی مهم در مجموعه داده می پردازند. در ادامه پنج درخت تصمیم گیری مبتنی برلگوریتم C4.5در هر خوشه با مجموعه ویژگی های منتخب ساخته می شود. بهترین درختان تصمیم گیری در هر خوشهمبتنی بر معیارهای بهینگی مورد نظر در این مقاله انتخاب شده و با هم ترکیب می شوند تا درخت تصمیم گیری نهاییبرای اعتبارسنجی مشتریان بانک ایجاد شود. ابزار یادگیری ماشین وکا و نرم افزارGATreeبرای رسیدن به نتایج بکار گرفته شده است. نتایج پژوهش نشان می دهد که استفاده از مدل ترکیبی پیشنهادی در ساخت درخت تصمیم گیریمنجر به افزایش دقت طبقه بندی نسبت به بسیاری از الگوریتم های مقایسه شده در این مقاله می شود؛ ولی پیچیدگیالگوریتم مدل ترکیبی پیشنهادی از برخی الگوریتم های طبقه بندی مقایسه شده در این مقاله بیشتر است.