A modified differential evolution algorithm with a balanced performance for Exploration and Exploitation phases
الموضوعات :Iraj Naruei 1 , farshid keynia 2
1 - Islamic Azad university , Kerman Branch
2 - Department of Energy, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran;
الکلمات المفتاحية: Balanced Differential Evolution, Optimization Algorithm, Exploration and Exploitation, Economic Dispatch Problem, Constrained Search Method,
ملخص المقالة :
Recently, many optimization algorithms have been proposed to find the best solution for complex engineering problems. These algorithms can search unknown and multidimensional spaces and find the optimal solution the shortest possible time. In this paper we present a new modified differential evolution algorithm. Optimization algorithms typically have two stages of exploration and exploitation. Exploration refers to global search and exploitation refers to local search. We used the same differential evolution (DE) algorithm. This algorithm uses a random selection of several other search agents to update the new search agent position. This makes the search agents continually have random moves in the search space, which refers to the exploration phase but there is no mechanism specifically considered for the exploitation phase in the DE algorithm. In this paper, we have added a new formula for the exploitation phase to this algorithm and named it the Balanced Differential Evolution (BDE) algorithm. We tested the performance of the proposed algorithm on standard test functions, CEC2005 Complex and Combined Test Functions. We also apply the proposed algorithm to solve some real problems to demonstrate its ability to solve constraint problems. The results showed that the proposed algorithm has a better performance and competitive performance than the new and novel optimization algorithms.
[1] A. R. Simpson, G. C. Dandy, and L. J. Murphy, "Genetic Algorithms Compared to Other Techniques for Pipe Optimization," J. Water Resour. Plan. Manag., vol. 120, no. 4, pp. 423–443, Jul. 1994, DOI: 10.1061/(ASCE)0733-9496(1994)120:4(423).
[2] J. C. Spall, Introduction to Stochastic Search and Optimization. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2003.
[3] I. Boussaïd, J. Lepagnot, and P. Siarry, "A survey on optimization metaheuristics," Inf. Sci. (NY)., vol. 237, pp. 82–117, Jul. 2013, DOI: 10.1016/j.ins.2013.02.041.
[4] J. A. Parejo, A. Ruiz-Cortés, S. Lozano, and P. Fernandez, "Metaheuristic optimization frameworks: a survey and benchmarking," Soft Comput., vol. 16, no. 3, pp. 527–561, Mar. 2012, DOI: 10.1007/s00500-011-0754-8.
[5] M. Dorigo and T. Stützle, Ant Colony Optimization. Scituate, MA, USA: Bradford Company, 2004.
[6] E.-G. Talbi, Metaheuristics: From Design to Implementation. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009.
[7] M. Mafarja et al., "Evolutionary Population Dynamics and Grasshopper Optimization approaches for feature selection problems," Knowledge-Based Syst., vol. 145, pp. 25–45, Apr. 2018, DOI: 10.1016/j.knosys.2017.12.037.
[8] A. A. Heidari, R. Ali Abbaspour, and A. Rezaee Jordehi, "An efficient chaotic water cycle algorithm for optimization tasks," Neural Comput. Appl., vol. 28, no. 1, pp. 57–85, Jan. 2017, DOI: 10.1007/s00521-015-2037-2.
[9] I. Aljarah, M. Mafarja, A. A. Heidari, H. Faris, Y. Zhang, and S. Mirjalili, "Asynchronous accelerating multi-leader salp chains for feature selection," Appl. Soft Comput., vol. 71, pp. 964–979, Oct. 2018, DOI: 10.1016/j.asoc.2018.07.040.
[10] M. Mafarja et al., "Binary dragonfly optimization for feature selection using time-varying transfer functions," Knowledge-Based Syst., vol. 161, pp. 185–204, Dec. 2018, DOI: 10.1016/j.knosys.2018.08.003.
[11] J. H. . Holland, "Genetic Algorithms understand Genetic Algorithms," Surprise 96, vol. 1, no. 1, pp. 12–15, 1967, DOI: 10.2307/24939139.
[12] R. Eberhart and J. Kennedy, "A new optimizer using particle swarm theory," in MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 2002, pp. 39–43, DOI: 10.1109/MHS.1995.494215.
[13] A. Colorni, M. Dorigo, and V. Maniezzo, "Distributed Optimization by Ant Colonies," in European Conference on artificial life, 1991, vol. 142, pp. 134–142.
[14] R. Storn and K. Price, "Differential Evolution- A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces," Tech. Rep. TR-95-012, vol. 11, no. 4, pp. 1–12, 1995, DOI: https://doi.org/10.1023/A:1008202821328.
[15] D. Manjarres et al., "A survey on applications of the harmony search algorithm," Eng. Appl. Artif. Intell., vol. 26, no. 8, pp. 1818–1831, Sep. 2013, DOI: 10.1016/j.engappai.2013.05.008.
[16] X.-S. Yang, "Firefly Algorithm, Lévy Flights, and Global Optimization," in Research and Development in Intelligent Systems XXVI, London: Springer London, 2010, pp. 209–218.
[17] X. Yang and A. Hossein Gandomi, "Bat algorithm: a novel approach for global engineering optimization," Eng. Comput., vol. 29, no. 5, pp. 464–483, Jul. 2012, DOI: 10.1108/02644401211235834.
[18] S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, and S. M. Mirjalili, "Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems," Adv. Eng. Softw., vol. 114, pp. 163–191, Dec. 2017, DOI: 10.1016/j.advengsoft.2017.07.002.
[19] S. Mirjalili, S. M. Mirjalili, and A. Lewis, "Grey Wolf Optimizer," Adv. Eng. Softw., vol. 69, pp. 46–61, Mar. 2014, DOI: 10.1016/j.advengsoft.2013.12.007.
[20] S. Mirjalili and A. Lewis, "The Whale Optimization Algorithm," Adv. Eng. Softw., vol. 95, pp. 51–67, May 2016, DOI: 10.1016/j.advengsoft.2016.01.008.
[21] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, "GSA: A Gravitational Search Algorithm," Inf. Sci. (NY)., vol. 179, no. 13, pp. 2232–2248, Jun. 2009, DOI: 10.1016/j.ins.2009.03.004.
[22] S. Mirjalili, S. M. Mirjalili, and A. Hatamlou, "Multi-Verse Optimizer: a nature-inspired algorithm for global optimization," Neural Comput. Appl., vol. 27, no. 2, pp. 495–513, Feb. 2016, DOI: 10.1007/s00521-015-1870-7.
[23] S. Mirjalili, "The Ant Lion Optimizer," Adv. Eng. Softw., vol. 83, pp. 80–98, 2015, DOI: https://doi.org/10.1016/j.advengsoft.2015.01.010.
[24] Anita, A. Yadav, and N. Kumar, "Artificial electric field algorithm for engineering optimization problems," Expert Syst. Appl., vol. 149, p. 113308, Jul. 2020, DOI: 10.1016/j.eswa.2020.113308.
[25] E. H. Houssein, M. R. Saad, F. A. Hashim, H. Shaban, and M. Hassaballah, "Lévy flight distribution: A new metaheuristic algorithm for solving engineering optimization problems," Eng. Appl. Artif. Intell., vol. 94, p. 103731, Sep. 2020, DOI: 10.1016/j.engappai.2020.103731.
[26] S. H. Samareh Moosavi and V. K. Bardsiri, "Poor and rich optimization algorithm: A new human-based and multi populations algorithm," Eng. Appl. Artif. Intell., vol. 86, pp. 165–181, Nov. 2019, DOI: 10.1016/j.engappai.2019.08.025.
[27] S. Kaur, L. K. Awasthi, A. L. Sangal, and G. Dhiman, "Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization," Eng. Appl. Artif. Intell., vol. 90, p. 103541, Apr. 2020, DOI: 10.1016/j.engappai.2020.103541.
[28] D. H. Wolpert and W. G. Macready, "No free lunch theorems for optimization," IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67–82, Apr. 1997, DOI: 10.1109/4235.585893.
[29] M. Dehghani, Z. Montazeri, O. P. Malik, A. Ehsanifar, and A. Dehghani, "OSA: Orientation Search Algorithm," Int. J. Ind. Electron. Control Optim., vol. 2, no. 2, pp. 99–112, 2019, DOI: 10.22111/ieco.2018.26308.1072.
[30] A. Faramarzi, M. Heidarinejad, S. Mirjalili, and A. H. Gandomi, "Marine Predators Algorithm: A nature-inspired metaheuristic," Expert Syst. Appl., vol. 152, p. 113377, Aug. 2020, DOI: 10.1016/j.eswa.2020.113377.
[31] P. Suganthan et al., "Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization," Nat. Comput., vol. 341–357, Jan. 2005.
[32] P. Civicioglu, E. Besdok, M. A. Gunen, and U. H. Atasever, "Weighted differential evolution algorithm for numerical function optimization: a comparative study with cuckoo search, artificial bee colony, adaptive differential evolution, and backtracking search optimization algorithms," Neural Comput. Appl., 2018, DOI: 10.1007/s00521-018-3822-5.
[33] P. Civicioglu and E. Besdok, "Bernstein-search differential evolution algorithm for numerical function optimization," Expert Syst. Appl., vol. 138, p. 112831, Dec. 2019, DOI: 10.1016/j.eswa.2019.112831.
[34] J. E. V. Ferreira, M. T. S. Pinheiro, W. R. S. dos Santos, and R. da S. Maia, "Graphical representation of chemical periodicity of main elements through boxplot," Educ. Química, vol. 27, no. 3, pp. 209–216, Jul. 2016, DOI: 10.1016/j.eq.2016.04.007.
[35] F. van den Bergh and A. P. Engelbrecht, "A study of particle swarm optimization particle trajectories," Inf. Sci. (NY)., vol. 176, no. 8, pp. 937–971, 2006, DOI: https://doi.org/10.1016/j.ins.2005.02.003.
[36] J. S. Arora, Introduction to Optimum Design. Elsevier, 2017.
[37] S. Khalilpourazari and S. Khalilpourazary, "An efficient hybrid algorithm based on Water Cycle and Moth-Flame Optimization algorithms for solving numerical and constrained engineering optimization problems," Soft Comput., vol. 23, no. 5, pp. 1699–1722, Mar. 2019, DOI: 10.1007/s00500-017-2894-y.
[38] X. Han, Q. Liu, H. Wang, and L. Wang, "Novel fruit fly optimization algorithm with trend search and co-evolution," Knowledge-Based Syst., vol. 141, pp. 1–17, Feb. 2018, DOI: 10.1016/j.knosys.2017.11.001.