روش تکرار تغییرات یانگ- لاپلاس کسری موضعی برای حل معادلات دیفرانسیل جزئی کسری موضعی
الموضوعات :هما افراز 1 , جعفر صابری نجفی 2
1 - دانشجوی دکتری، گروه ریاضی کاربردی (آنالیز عددی)، دانشکده ریاضی، دانشگاه فردوسی، مشهد، ایران
2 - استاد، گروه ریاضی کاربردی (آنالیز عددی)، دانشکده ریاضی، دانشگاه فردوسی، مشهد، ایران
الکلمات المفتاحية: Cantor sets, Local fractional derivative, Local fractional calculus, Yang-Laplace transform, Local fractional variational iteration method,
ملخص المقالة :
در دهه های اخیر نظریه حساب کسری موضعی به طور موفقیت آمیزی برای توصیف و حل مسائل علوم پایه و مهندسی استفاده شده است .دراین پژوهش ، روش تکرارتغییرات یانگ لاپلاس کسری موضعی برای حل معادلات دیفرانسیل با مشتقات جزئی کسری موضعی روی مجموعه کانتور استفاده شده است. جوابهای دقیق و تقریبی مشتق ناپذیر برای انواع معادلات دیفرانسیل خطی وغیرخطی بدست آمده است. نشانداده شده است که روش استفاده شده یک روش آسان و کارآمد برای اجرا در مسائل خطی وغیر خطی ناشی در علوم و مهندسی میباشد. دراین مقاله روی روش تکرارتغییرات یانگ لاپلاس کسری موضعی که از ترکیب روش تکرار تغییرات کسری موضعی وتبدیل یانگ لاپلاس بدست آمده است، تاکید شده است. بیشتر جوابهای حاصل از این روش به صورت سری بدست میآیند که معمولا با سرعت به جوابهای دقیق یا تقریبی همگرا می شوند. مثال های تشریحی نشان می دهدکه این روش قادر به کاهش حجم محاسبات نسبت به روش های کلاسیک موجود می باشد..
[1] J.H. He, Approximate analytical solution for seepage flow with fractional derivativesm in porous media, Computer Methods Applied Mechanics and Engineering, 167(1) (1998), 57-68.
[2] F. Mainardi, Y. Luchko and G. Pagnini, The fundamental solution of the space-time fractional diffusion equation, Fractional Calculus & Applied Analysis, 4(2) (2001), 153-192.
[3] S.Z. Rida, A.M.A. El-Sayed and A.A.M. Arafa, On the solutions of time-fractional reactiondiffusion equations, Communications in Nonlinear Science and Numerical Simulation, 15(12) (2010), 3847-3854.
[4] A. Yildirim, He’s homotopy perturbation method for solving the space-time fractional telegraph equations, International Journal of Computer Mathematics, 87(13) (2010), 29983006.
[5] L. Debnath, Fractional integral and fractional differential equations in fluid mechanics, Fractional Calculus & Applied Analysis, 6(2) (2003), 119-155.
[6] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, NY, USA, 1993.
[7] K.B. Oldham and J. Spanier, The fractional calculus: Theory and applications of differentiation and integration to arbitrary order with an annotated chronological bibliography Bertram Ross, Mathematics in Science and Engineering (Vol. 111), Academic Press, New York, NY, USA, 1974.
[8] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies (Vol. 204), Elsevier Science B.V., Amsterdam, The Netherlands, 2006.
[9] Y.-J. Hao, H.M. Srivastava, H. Jafari, and X.-J. Yang, “Helmholtz and diffusion equations associated with local fractional derivative operators involving the Cantorian and Cantor-type cylindrical coordinates,” Advances in Mathematical Physics, vol. 2013, ArticleID754248, 5 pages, 2013.
[10] X.-J. Yang, D. Baleanu, and J.A. Tenreiro Machado, “Systems of Navier-Stokes equations on cantorsets” Mathematical Problems in Engineering, vol. 2013, Article ID769724, 8 pages, 2013.
[11] Y. Y. Li, Y. Zhao, G. N. Xie, D. Baleanu, X. J. Yang, and K. Zhao, “Local fractional Poisson and Laplace equations with applications to electrostatics in fractal domain,” Advances in Mathematical Physics, vol. 2014, Article ID 590574, 5 pages, 2014.
[12] J.-H. He and F.-J. Liu, “Local fractional variational iteration method for fractal heat transfer in silk cocoon hierarchy” Nonlinear Science Letters A, vol. 4, no. 1, pp. 15–20, 2013.
[13] X.-J. Yang D. Baleanu, and
W.P. Zhong “Approximate solutions for diffusion equations on cantor space-time” Proceedings of the Romanian AcademyA, vol. 14, no.2, pp. 127–133, 2013.
[14] X.J. Yan, D. Baleanu, M.P. Lazarevic, and M.S. Cajic, “Fracta boundary value problems for integral and differential equations with local fractional operators,” Thermal Science, pp. 103–103, 2013.
[15] Y. Zhao, D.-F. Cheng, and X.-J. Yang, “Approximation solutions for local fractional Schr¨odinger equation in the one dimensional Cantorian system,” Advances in Mathematical Physics, vol.2013, Article ID 291386, 5 pages,2013.
[16] C. F. Liu, S. S. Kong, and S. J. Yuan, “Reconstructive schemes for variational iteration method within Yang-Laplace transform with application to fractal heat conduction problem,” Thermal Science, vol. 17, no.3, pp.715–721, 2013.
[17] Yang, X.J, Applications of local fractional calculus to engineering in fractal time-space: Local fractional differential equations with local fractional derivative
[18] X. J. Yang, et al. Local Fractional Integral Transforms and Their Applications, Elsevier, UK, 2015.
[19] X. J. Yang, Advanced Local Fractional Calculus and Its Applications, World Science, New York, USA, 2012.
[20] H. Jafari, H. K. Jassim, ”A Coupling Method of Local Fractional Variational Iteration Method and Yang-Laplace Transform for Solving Laplace Equation on Cantor Sets”, Int. J. Pure Appl. Sci. Technol., 26 (1) (2015), pp. 24-33.
[21] H. K. Jassim, C. Ünlü, S. P. Moshokoa, C. M. Khalique, ” Local Fractional Laplace Variational Iteration Method for Solving Diffusion and Wave Equations on Cantor Sets within Local Fractional Operators”, Hindawi Publishing Corporation Mathematical Problems in Engineering Article ID 309870, 2015.
[22] A.-M. Yang, X.-J. Yang, and Z.-B. Li, “Local fractional series expansion method for solving wave and diffusion equations on Cantor sets,” Abstract and Applied Analysis, vol. 2013, Article ID 351057, 5 pages, 2013.