تحلیل حساسیت مساله حمل و نقل در محیط عدم قطعیت با پارامترهای خاکستری
الموضوعات : تحقیق در عملیات
فرید پورافقی
1
,
داود درویشی سلوکلایی
2
1 - گروه ریاضی، دانشگاه پیام نور، تهران، ایران
2 - گروه ریاضی، دانشگاه پیام نور، تهران، ایران
الکلمات المفتاحية: تحیل حساسیت, عدم قطعیت, اعداد خاکستری بازهای, حمل و نقل خاکستری.,
ملخص المقالة :
چکیده در مسائل حمل و نقل معمولی، همیشه فرض بر این است که مقدار هر مبدا و میزان تقاضای هر مقصد یک عدد مشخص است. اما در شرایط خاص، مانند بلایای طبیعی، در زمان جنگها و... میزان عرضه هر مبدا و تقاضای هر مقصد به طور دقیق مشخص نیست و می تواند به صورت اعدادی غیرقطعی و نادقیق بیان شود. لذا پیدا کردن محدودهای برای میزان عرضه هر منبع و میزان تقاضای هر مقصد که بتواند با فرض ثابت بودن متغیرهای مستقل دیگر، میزان تابع هدف را هم چنان ثابت باقی نگه دارد، اهمیت پیدا میکند. روشهای متفاوتی برای حل مساله حمل و نقل با پارامترهای غیرقطعی ارائه شده است. زمانی که نتوان توابع عضویت را برای اعداد فازی استخراج نمود یا تعداد دادهها کم باشد، یک رویکرد مناسب برای مواجهه با داده های غیرقطعی و نادقیق استفاده از نظریه سیستم های خاکستری و اعداد خاکستری بازهای میباشد که از کارایی خوبی در این موقعیت برخوردارند. از این رو در این مقاله با استفاده از مفاهیم مرکز و عرض اعداد خاکستری بازهای، به ارائه الگوریتمی به منظور تحلیل حساسیت پارامترهای عرضه و تقاضای مساله حمل و نقل خاکستری پرداخته شده است. بدین ترتیب میتوان محدودههایی را برای میزان عرضه و تقاضای مساله حمل و نقل یافت که هرگونه تغییر در آن محدودهها تاثیری بر مقدار بهینه مساله نخواهد گذاشت. برای نشان دادن کارایی روش پیشنهادی، مثال عددی نیز آورده شده است.
[1] Kavitha, K. and Pandian, P. (2012). Sensitivity analysis of supply and demand in a fully interval transportation problem, International Journal of Engineering Research and Applications, 2(3), 1900-1910.
[2] Goodarzian, F., Abraham, A. and Fathollahi-Fard, A.M. (2021). A biobjective home health care logistics considering the working time and route balancing: a self-adaptive social engineering optimizer, J. Comput. Desi. Eng. 8(1), 452–474.
[3] Goodarzian, F., Taleizadeh, A.A., Ghasemi, P. and Abraham, A. (2021). An integrated sustainable medical supply chain network during COVID-19, Eng. Appl. Artif. Intell, 100, 104188.
[4] Goodarzian, F., Shishebori, D., Nasseri, H. and Dadvar, F. (2021). A bi-objective production-distribution problem in a supply chain network under grey flexible conditions, RAIRO-Oper. Res, 55, S1287–S1316.
[5] Sahebjamnia, N., Goodarzian, F. and Hajiaghaei-Keshteli, M. (2020). Optimization of multi-period three-echelon citrus supply chain problem, J. Optim. Ind. Eng, 13(1), 39–53.
[6] Fakhrzad, M.B. and Goodarzian, F. (2021). A new multi-objective mathematical model for a Citrus supply chain network design: metaheuristic algorithms, J. Optim. Ind. Eng, 14(2), 127–144.
[7] Fathollahi-Fard, A.M., Ahmadi, A., Goodarzian, F. and Cheikhrouhou, N. (2020). A bi-objective home healthcare routing and scheduling problem considering patients’ satisfaction in a fuzzy environment, Appl. Soft Comput. 93, 106385.
[8] Damci, K.P., Dey, S.S. and Kücükyavuz, S. (2015). On the transportation problem with market choice. Discret Applid Mathematics, 181:54–77.
[9] Sharma, A., Verma, V., Kaur, P. and Dahiya, K. (2015). An iterative algorithm for two level hierarchical time minimization transportation problem, European Journal Operation Research, 246(3), 700–707.
[10] Maity, G. and Roy, S.K. (2015). Solving multi-objective transportation problem with interval goal using utility function approach, International Journal of Operational Research, 27(4), 513–529.
[11] Roy, S.K. and Mahapatra, D.R. (2011). Multi-objective interval valued transportation probabilistic problem involving log-normal, International Journal of Mathematics and Scientific Computing, 1(2), 14-21.
[12] Ghasemi, P., Khalili-Damghani, K., Hafezalkotob, A. and Raissi, S. (2020). Stochastic optimization model for distribution and evacuation planning (A case study of Tehran earthquake), Socioecon. Plan. Sci, 71, 100745.
[13] Goodarzian, F., Hoseini-Nasab, H., Toloo, M. and Fakhrzad, M.B. (2021). Designing a new Medicine Supply Chain Network considering production technology policy using two novel heuristic algorithms, RAIRO – Oper. Res, 55(2), 1015–1042.
[14] Deng, J.L. (1982). The control problems of grey systems, Systems and Control Letters, 1(5), 288-294.
[15] Li., Q. X. (2007). The cover solution of grey linear programming. Journal of Grey System, 19(4), 309-320.
[16] Nasseri, S. H., Yazdani, A. and Darvishi, D. (2016). A primal simplex algorithm for solving linear programming problem with grey cost coefficients, Journal of New Researches in Mathematics, 1(4), 115-135.
[17] Mahmoudi, A., Liu, S., Ahmed, J.S. and Abbasi, M. (2019). A novel method for solving linear programming with grey parameters, Journal of Intelligent and Fuzzy Systems, 36, 161-172.
[18] Razavi Hajiagha, S.H., Akrami, H. and Hashemi, S.S. (2012). A multi objective programming approach to solve grey linear programming. Grey Systems: Theory and Application, 2 (2), 259-271.
[19] Saffar Ardabili, J., Darvishi, D. and PourOfoghi, F. (2020). Application of center and width concepts to solving grey linear programming, International Journal of Applied and Computational Mathematics, 6 (49), 1-12.
[20] Maity, G. and Roy, S.K. (2016). Solving a multi-objective transportation problem with nonlinear cost and multichoice demand. International Journal of Management Science and Engineering Management, 11(1), 62–70.
[21] Annie Christi, M.S. and Kalpana, I. (2016). Solutions of multi objective fuzzy transportation problem with non-linear membership functions, International Journal of Engineering Research and Application, 6(11), 52-57.
[22] Yeola, M.C. and Jahav, V.A. (2016). Solving multi-objective transportation problem using fuzzy programming technique parallel method, International Journal of Recent Scientific Research, 7(1), 8455-8457.
[23] Abdul Kalam Azad, S.M., Hossain, B. and Rahaman, M. (2017). An algorithmic approach to solve transportation problem with the average total oppurtunity cost method, International Journal of Scientific and Research Publications, 7(2), 262-270.
[24] Gaurav, S., Abbas, S. H. and Gupta, V. K. (2012). Optimal solution of transportation problem with the help of zero point method, International Journal of Engineering Research and Technology (IJERT), l(5), 1-6.
[25] Gupta, A. and Kumar, A. (2012). A new method for solving linear multi objective transportation problems with fuzzy parameters, Applied Mathematical Modelling, 36, 1421-1430.
[26] Jignasha, G.P. and Jayesh, M.D. (2017). Solving multi Objective interval transportation problem using grey situation decision-making theory based on grey numbers, International Journal of Pure and Applied Mathematics, 113(2), 219-233.
[27] Kowalski, K., Lev, B., Shen, W. and Tu, Y. (2014). A fast and simple branching algorithm for solving small scale fixed-charge transportation problem. Operations Research Perspectives, 1(1), 1-5.
[28] Murugesan, S. and Ramesh Kumar, B. (2013). New optimal solution to fuzzy interval transportation problem, International Journal of Engineering Science and Technology, 3(1), 188-192.
[29] Nasseri, S.H., Darvishi, D. and Yazdani, A. (2017). A new approach for solving grey assignment problems, Control and Optimization in Applied Mathematics, 2(1), 15-28.
[30] Pandian, P., Natarajan, G. and Akilbasha, A. (2016). Fully rough integer interval transportation problems, International Journal of Pharmacy and Technology, 8, 13866-13876.
[31] Pandian, P. and Akilbasha, A. (2018). Fuzzy interval Integer transportation problems, International Journal of Pure and Applied Mathematics, 111(9), 133-142.
[32] Palanivel, M. and suganya, M. (2018). A new method to solve transportation problem harmonic mean approach, Engineering Technology, 2(3), 1-3.
[33] Roy, S.K. and Mahapatra, D.R. (2014). Solving solid transportation problem with multi-choice cost and stochastic supply and demand, International Journal Strategic Decision Sciences, 5(3), 1–26.
[34] Sophia Porchelvi, R. and Anitha, M. (2018). On solving multi objective interval transportation problem using fuzzy programming technique, International Journal of Pure and Applied Mathematics, 118(6), 483-491.
[35] Pourofoghi, F., Darvishi, D. and Saffar Ardabili, J. (2021). A New Approach to Find the Solution of Transportation Problem with Grey Parameters, journal of operational research and its applications, 18, 2 (69), 59-73.
[36] Pour Ofoghi, F., Saffar Ardabili, J. and Darvishi, D. (2019). A new approach for finding an optimal solution for grey transportation problem, Nonlinear Analysis in Engineering and Sciences, 10, 83-95.
[37] Moore, R.E., Kearfott, R.B. and Cloud, M.J. (2009). Introduction to Interval Analysis. SIAM Press, Philadelphia.
[38] Taha, H.A. (1989). Operations Research. Macmillan Publishing Company, New York.
