استفاده از روش چند فرکتالی در رتبه بندی کارایی سبد سهام
الموضوعات :
دانش مالی تحلیل اوراق بهادار
مهناز دوستی
1
,
مرتضی رحمانی
2
1 - دانشجوی کارشناسی ارشد دانشگاه علم و فرهنگ، گروه مهندسی صنایع
2 - عضو هیات علمی دانشگاه علم و فرهنگ، گروه مهندسی صنایع
تاريخ الإرسال : 06 السبت , شوال, 1443
تاريخ التأكيد : 06 السبت , شوال, 1443
تاريخ الإصدار : 19 الأحد , رجب, 1443
الکلمات المفتاحية:
بازار سهام,
گام تصادفی,
کارایی,
چند فرکتالی,
بعد فرکتالی,
ملخص المقالة :
سرمایه گذاران در جهان همواره به دنبال سرمایه گذاری ایمن، در بازار سرمایه کشورها یا سهام شرکت های آن می باشند. به همین جهت یافتن روشی کاربردی وعلمی برای شناسایی بهترین فرصت سرمایه گذاری تاثیر بسیار مطلوبی را بر انتخاب یک سرمایه گذار خواهد گذاشت. سهام کارا، سهامی است که اطلاعات موجود در بازار در قیمت آن منعکس و استفاده از قیمت های گذشته سهام در یک بازه زمانی به منظور تجزیه و تحلیل روند و نوسانات آینده سهام، منتهی به نتایج درست و قابل استنادی می شود. در این تحقیق با فرض کارایی ضعیف، یک سبد سهام متشکل از 11 سهام پذیرفته شده در بازار سرمایه ایران مورد بررسی قرار گرفته است. به این مفهوم که از طریق اطلاعات قیمت سهام از سال های 95 الی 99 روند و شدت نوسانات مورد بررسی قرار گرفته است، سهام هایی که دارای شاخص کارایی فرکتالی کمتر و بعد فرکتالی بالاتر ودر نتیجه شدت نوسانات منسجم بیشتری باشند رتبه کارایی بالاتری دریافت می کنند زیرا قدرت نقد شوندگی سهام بالاتر رفته و برای سرمایه گذاری ایمن خواهد بود. نتایج این تحقیق با استفاده از روش چند فرکتالی جزئیات دقیق تری از مراحل رتبه بندی سهام کارا در یک سبد سرمایه گذاری را نشان می دهد.
المصادر:
[1] ادوین التون، مارتین گروبر، استفن براون و ویلیام گوتزمان، مترجم علی سوری، (1391) نظریه جدید سبد دارایی و تحلیل سرمایه گذاری، انتشارات بانک تجارت.
[2] ﻣﺮﺗﻀﯽ رﺣﻤﺎﻧﯽ ﺑﺎ ﻫﻤﻜﺎری ﻓﻬﯿﻤﻪ ﺻﺎﺋﺒﯽ و ﻧﺮﺟﺲ ﻋﻠﯽ ﺑﺨﺸﯽ، (1393) ﻛﺎرﺑﺮد ﻧﻈﺮﯾﻪ آﺷوب و ﻓﺮاﻛﺘﺎل در ﭘﯿﺶﺑﯿﻨﯽﺳﺮیﻫﺎی زﻣﺎنی، ﭘﮋوﻫﺸﻜﺪه ﺗﻮﺳﻌﻪ ﺗﻜﻨﻮﻟﻮژی.
[3] دولو، م، ورزیده، ع، (1399). پیش بینی شاخص کل بورس اوراق بهادار تهران با استفاده از مدل حرکت براونی هندسی نشریـه علمـی دانش مالی تحلیل اوراق بهادار سال سیزدهم، شماره چهل و ششم صفحه 193 الی 208.
[4] Fama, E.F., (1965), The behaviour of stock-market prices, Journal of Business. Vol. 38, pp.34-105.
[5] Fama, E.F., (1965), Random walks in stock market prices, Financial Analysts Journal. Vol.21 pp.55-59
[6] Fama, E.F., (1970), Efficient capital markets: a review of theory and empirical work, Journal ofFinance. Vol.25, 383–417.
[7] Shahzad, S.J.H., M. Zakaria, S. Ali, N. Raza, (2015), Market efficiency and asymmetric relationship between south asian stock markets: An empirical analysis, Pakistan J. Commer. Soc. Sci. 9 (3), pp. 875–889.
[8] Rizvi, S.A.R. S. Arshad, (2014), Investigating the efficiency of East Asian stock markets through booms and busts, Pac. Sci. Rev. 16 (4), pp. 275–279.
[9] Lima, E.J.A., B.M., Tabak, (2004) Tests of the random walk hypothesis for equity markets: evidence from China, Hong Kong and Singapore, Appl. Econ. Lett. Vol. 11, pp. 255–258.
[10] Wang, J., D. Zhang, J. Zhang, (2015) Mean reversion in stock prices of seven Asian stock markets: Unit root test and stationary test with Fourier functions, Int. Rev. Econ. Finance, vol. 37 pp. 157–164.
[11] Rizvi, S.A.R., G. Dewandaru, O.I. Bacha, M. Masih, (2014), An analysis of stock market efficiency: Developed vs Islamic stock markets using MF-DFA, Physica A, vol. 407, pp. 86–99.
[12] Ali.S, J.H., Shahzad, N. Raza, Kh.H. Yahyaee, (2018) stock market efficiency: A comparative analysis of Islamic and conventional stock markets, Physica A, vol. 503, pp. 139–153.
[13] Shahzad, S.J.H., S.M., Nor, W. Mensi, R.R. Kumar, (2017), Examining the efficiency and interdependence of US credit and stock markets through MF-DFA and MF-DXA approaches, Physica A, vol 471., pp. 351–363.
[14] Tiwari, A.K., C.T., Allbulesun, S.M., Yoon, (2017), A multifractal detrended fluctuation analysis of financial market. efficiency: Comparison using Dow Jones sector ETF indices, Physica A
[15] Arshad, S. et al., (2016), Investigating stock market efficiency: A look at OIC membercountries, Research in International Business and Finance, vol. 36, pp. 402–413.
[16] Uddin, G.S., J.A., Hernandez, S.J.H., Shazad, S.M. Yoon, (2018), Time-varying evidence of efficiency, decoupling, and diversification of conventional and Islamic stocks. International Review of Financial Analysis, vol. 56, pp. 167–180.
[17] Khazali, O.A., E. Bouri, D. Roubaud, T. Zoubi, (2017) The impact of religious practice on stock returns and volatility, International Review of Financial Analysis, vol. 52, pp. 172–189.
[18] Rounaghi, M.M., F. Nassir Zadeh, (2016) Investigation of market efficiency and Financial Stability between S&P 500 and London Stock Exchange: Monthly and yearly Forecasting of Time Series Stock Returns using ARMA model, Published by Elsevier B.V.
[19] Gulich, D., L. Zunino, (2014), A criterion for the determination of optimal scaling ranges in DFA and MF-DFA, Physica A, vol. 397, pp. 17–30.
[20] Gozbasi, O., I. Kucukkaplan, S. Nazlioglu, (2014), Re-examining the Turkish stock market efficiency: Evidence from nonlinear unit root tests, Econ. Modell., vol. 38, pp. 381-384.
[21] Neaime, S., (2015), Are emerging MENA stock markets mean reverting? A Monte Carlo simulation, Finance Res. Lett. vol. 13, pp. 74–80.
[22] Rizvi, S.A.R., S. Arshad, (2015), Investigating the efficiency of East Asian stock markets through booms and busts, Pac. Sci. Rev. 16, vol. 4, pp. 275–279.
[23] Stošić, D., et al., (2015), Multifractal properties of price change and volume change of
stock market indices, Physica A, Published by Elsevier B.V.
[24] Yang, L., Y. Zhu, Y. Wang, (2016), Multifractal characterization of energy stocks in China: A multifractal detrended fluctuation analysis, Physica A, vol. 451, pp. 357–365.
[25] Zhao, H., S. He, (2016), Analysis of speech signals’ characteristics based on MF-DFA with moving overlapping windows, Physica A, vol. 442, pp. 343–349.
[26] Zhuang, X., Y. Wei, F. Ma, (2015) Multifractality, efficiency analaysis of Chinese stock market and its cross- correction with WTI crude oil price, Physica A, vol. 430, pp. 101- 113.
[27] Bai, M.Y., H.B., Zhu, (2010), power law and multiscaling properties of the Chinese stock market, physica A, vol. 389, pp. 1883-1890.
[28] Rizvi, S.A., S. Arshad, (2017) Analysis of the efficiency- integration nexus of Japanese stock market, physica A, vol. 470, pp. 296-308.
[29] Mensi.W, A.K., Tiwar, S. Min Yoon, (2016) Global financial crisis and weak-form efficiency of Islamic sectoral stock markets: An MF-DFA analysis, physa. Vol. 12, pp. 34.
[30] Chen. C, Y. Wang, (2017), Understanding the multifractality in profolio excess returns, physica A, vol. 466, pp. 346-355.
[31] Nian, D., Z. Fu, (2019), Extended self-similarity based multi-fractal deternded fluctuation analysis: A novel multi-fractal quantifying method commun Nonlinear Sci Numer Simulate, vol.67, pp. 568-576.
[32] Kantelharddt, Jan.W., (2008), Fractal and Multifractal Time Series, arxiv:0804.0747v1.
[33] Ian McLeod, A., (2016) Mark, M., Meerschaert, and Farzad sabzikar, TEMPERED FRACTIONNAL TIME SERIES.
[34] Mielniczuk, J., P. Wojdyllo, (2007), Estimation of Hurst exponent revisited, Computational Statistics & Data Analysis 51, pp. 4510-4525.
[35] Ruzhen Yan, Ding Yue, Xudong Chen, Xu Wu,(2020),
Non-linear characterization and trend identification of liquidity in China’s new OTC stock market based on multifractal detrended fluctuation analysis, Chaos, Solitons and Fractals 139 , 110063
[36] Yin, T.; Wang, Y(2021). Market Efficiency and Nonlinear Analysis of Soybean Futures. Sustainability,13, 518. https://doi.org/10.3390/
_||_