Investigating the Performance of Membrane PEEK/PVA Modified with ZnO Nanoparticles in the Permeability and Selectivity of CO2/N2
الموضوعات :
Journal of Physical & Theoretical Chemistry
Arezoo Ghadi
1
,
Ahmad Bahreini
2
,
Mojtaba Masoumi
3
1 - Department of Chemical Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
2 - Department of Chemical Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
3 - Department of Chemical Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
تاريخ الإرسال : 25 الإثنين , جمادى الأولى, 1444
تاريخ التأكيد : 10 السبت , رمضان, 1444
تاريخ الإصدار : 28 الثلاثاء , رجب, 1443
الکلمات المفتاحية:
Nanoparticles,
Separation,
Gas CO2/N2,
Membrane,
permeability,
ملخص المقالة :
Membrane technology is applied in several industries due to the advantages of being environmentally friendly and energy efficient. An in-depth examination on the impact of membrane Polyetheretherketone/Polyvinylalcohol (PEEK/PVA) composite modified with nanoparticle zinc oxide (ZnO) on particle size, mechanical, and morphological properties. Scanning electron microscopy (SEM) was applied for studying the dispersion of ZnO particles in PEEK/PVA composite. The characterization of the obtained hybrids was done using Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD) with an increase in the solubility of the gas molecules within the polymer matrix, an increase in the CO2 permeability is observed. The outcomes of the N2 permeability confirmed that the permeability of this agent undergo reduction with increasing pressure. Separation process at high pressures was proven since the selectivity of CO2/N2 boosted from 93.8 at 1 bar pressure to 43.6 at 8 bar pressure, with increasing feed pressure. The careful and detailed examination of the permeability and selectivity of CO2/N2 for membrane PEEK/PVA/ZnO nanoparticle modified with PEEK/PVA composite was performed. An increase in the CO2 permeability to the membrane PEEK/PVA from 19.6 to 87.7 upon modifying the surface area of the membrane PEEK/PVA/m-ZnO NPs (1.0 wt%, 2.0 wt% and 3.0 wt%), and increasing the percentage of this additive in the polymer matrix. Increase was due to the presence of cavities developed in the process of surface modification, and the increased of free volume and solubility of CO2/N2 inside the polymer membrane.
المصادر:
Zeinali, M. Aryaeinezhad, Chem. Eng. Technol. 38 (2015) 2079.
F. Barquin, C. C. Coterillo, M. Palomino, S. Valencia, A. Irabien, Chem. Eng. Technol. 38 (2015) 658.
E. Hoyos Ossa, S. E. Gallego Rios, D.C. Rodríguez Loaiza, G.A. Penuela, Int. J. Environ. Anal. Chem. 101 (2021) 1. https://doi.org/10.1080/03067319.2021.1900148.
F. Soleymanipour, A. H. Saeedi Dehaghani, V. Pirouzfar, A. Alihossein, J. Appl. Polym. Sci. 133 (2016) 4397.
H. Nematollahi, A. H. Saeedi Dehaghani, R. Abeini, Korean. J. Chem. Eng. 33 (2016) 657.
Abedini, S. M. Mousavi, R. Aminzadeh, Chem. Ind. Chem. Eng. 18 (2012) 385.
A. Semsarzadeh, B. Ghalei, M. Fardi, M. Esmaeeli, E. Vakili, Korean. J. Chem. Eng. 31 (2014) 841.
F. Soleymanipour, A. H. Saeedi Dehaghani, V. Pirouzfar, A. Alihosseini, J. Appl. Polym. Sci. 133 (2016) 48839.
Alihosseini, E. Dadfar, S. Aibod, J. Appl. Chem. Sci. Int. 3 (2015) 84.
Rahmanian, M. Pakizeh, S. A. A. Mansoori, R. Abedini, J. Hazard. Mater. 187 (2011) 67.
Hassanajili, E. Masoudi, G. Karimi, M. A. Khademi, Sep. Purif. Technol. 116 (2013) 1.
Saadati, M. Pakizeh, J. Taiwan Institute Chem. Eng. 71 (2017) 265.
Kristin, Int. J. Greenhouse Gas Cont. 81 (2019) 93.
Taher, A. Iiyas, X. Li, M. Royl Bilad, J. Appl. Polymer Sci. 135(10) (2017) 45952.
Zhao, J. Ren, Y. Wang, Y. Qiu, H. Li, K. Hua, X. Li, J. Ji, M. Deng, J. Membr. Sci. 521 (2017) 104.
S. Hosseini, J.A. Dehkordi, P. K. Kundu, Chem. Prod. Proc. Mod. 11 (2016) 7.
R. Dilshad, A. Islam, A. Sabir, AM. Shafiq, M.T.Z. Butt, A. Ijaz, T. Jamil, J. Industrial Eng. Chem. 55 (2017) 65.
Saberi, A. A. Dadkhah, S. A. Hashemifard, J. Member. Sci. 499 (2015) 164.
Loloei, M. Omidkhah, A. Moghadassi, A. E. Amooghin, Int. J. Greenhouse Gas Cont. 39 (2015) 225.
Saberi, J. Serb. Chem. Soc. 86(4) (2021) 341.
Toni, M. Minelli, G. C. Sarti, Fluid Phase Equil. 455 (2017) 54.
Saberi, S. A. Hashemifard, A. A. Dadkhah, RSC. Adv. 6 (2016) 16561.
Kheirtalab, R. Abedini, M. Ghorbani, J. Appl. Res. Chem-Polymer Eng. 5 (2020) 55.
Azizi, M. Arzani, H. R. Mahdavi, T. Mohammadi, Korean. J. Chem. Eng. 34(9) (2017) 2459.
C. Wong, P. S. Goh, A. F. Ismail. J. Mater. Chem. A. 41 (2016) 15726.
N. A. Shafie, X. L. Wen, M. Nordin, A. H. Nik, N. S. Muhammad Roil Bilad, A. P. Zulfan, H. W. Mohd Dzul, Adv. Polymer Technol. 20 (2019) 1.
H. Jazebizadeh, S. Khazraei, Silicon. 9(5) (2017) 775.
Alinezhad, M. R. Fakhimi Abarghouei, M. Tajbakhsh, K. Niknam, Iran. J. Chem. Chem. Eng. 40(2) (2021) 581.
Bhattacharya, M. K. Mandal, J. Clean. Produc. 186 (2018) 241.
Mehrdad, N. Noorani, Sepa. Purif. Technol. 20 (2019) 1.
Abedini, A. Mosayebi, M. Mokhtari, Proc. Safety Environ. Prot. 114 (2018) 229.
Oguz Erdogan, Int. J. Environ. Anal. Chem. 101(4) (2021) 1. https://doi.org/10.1080/03067319.2020.1832480.
Almenningen, J. Gauteplass, L. P. Hauge, T. Barth, J. Petrol. Sci. Eng. 177 (2019) 880.
Wang, Y. Liu, S. Huang, H. Wu, Y. Li, Z. Tian, Z. Jiang, J. Membr. Sci. 460 (2014) 62.