بررسی تاثیر دوره نوردهی بر خصوصیات سینتیک رشد اسپیرولینا پلاتنسیس و تولید رنگدانههای طبیعی در فتوبیوراکتور همزن دار
الموضوعات :سجاد ترابی 1 , مهشید جهادی 2 , نفیسه قاسمی سپرو 3 , مریم اعرج شیروانی 4
1 - گروه علوم و صنایع غذایی، دانشکده کشاورزی و منابع طبیعی ، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران
2 - گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه آزاد اسلامی واحد اصفهان (خوراسگان)
3 - گروه علوم و صنایع غذایی، دانشکده کشاورزی و منابع طبیعی، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران
4 - گروه علوم و صنایع غذایی، دانشکده کشاورزی و منابع طبیعی ، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران
الکلمات المفتاحية: فتوبیوراکتور, : اسپیرولینا پلاتنسیس, فیکوسیانین, دوره نوردهی,
ملخص المقالة :
مقدمه: امروزه، اسپیرولینا پلاتنسیس یکی از محبوبترین ریزجلبکهاست که حاوی مقادیر قابلتوجهی از مولکولهای فعالزیستی و منبع غنی از رنگدانههایی مانند فیکوسیانین است.مواد و روشها: در این پژوهش تاثیر دوره نوردهی بر کشت جلبک اسپیرولینا پلاتنسیس و تولید رنگدانههای (کلروفیل، فیکوسیانین، آلوفیکوسیانین و کاروتنوئید) در شرایط دمای 28 درجه سلسیوس، شدت نور 150 (µmol/m-2/s-1)، در محیط کشت زاروک،pH برابر 9، در کشت غوطه وری در فرمانتور همزن دار مورد مطالعه قرار گرفت. یافتهها: نشان داد افزایش زمان نوردهی بهعنوان یک محرک رشد در اسپیرولینا میباشد و با افزایش زمان نوردهی غلظت زیست-توده، کلروفیل، فیکوسیانین، آلوفیکوسیانین و کاروتنوئید به صورت معناداری افزایش مییابد (05/0p≤). در روزهای پایانی افزایش تراکم سلولی اثر سایهزنی سطح بر عمق را افزایش داد و نفوذ نور به عمق کشت کاهش یافت و بر میزان کلروفیل تاثیر منفی گذاشت. دوره نوردهی 24 ساعته بیشترین غلظت زیستتوده، فیکوسیانین، آلوفیکوسیانین به ترتیب 46/1 گرم در لیتر، 145 و 57/39 میلی گرم در لیتر را نشان داد این درحالی بود که دوره نوردهی 16 ساعته بیشترین غلظت کلروفیل و کارتنوئید به ترتیب 62/8 و 05/3 میلی گرم در لیتر بود.نتیجهگیری: به طور کلی استفاده از دوره نوردهی 24 ساعته، تولید رنگدانهها و زیستتوده را افزایش میدهد اما تولید رنگدانههای کلروفیل و کاروتنوئید در اواخر دوره کشت به دلیل افزایش غلظت زیستتوده و کاهش نفوذ نور در تیمار ۲۴ ساعت روشنایی کاهش یافت.
Ajayan, K. V., Selvaraju, M. & Thirugnanamoorthy, K., (2012). Enrichment of chlorophyll and phycobiliproteins in Spirulina platensis by the use of reflector light and nitrogen sources: An in-vitro study. Biomass and Bioenergy, 47, 436-441.
Banayan, S., Jahadi, M. & Fazel, M. (2020). Investigation of factors affecting the production of chlorophyll and carotenoid pigments from Spirulina platensis using Berman platelet design. Journal of Food Microbiology, 7(2), 70-81. [In Persian].
Chen, C.Y., Kao, P.C., Tsai, C.J., Lee, D.J. & Chang, J.S. (2013). Engineering strategies for simultaneous enhancement of C-phycocyanin production and CO2 fixation with Spirulina platensis. Bioresource Technology, 145, 307-312.
Chen, H.B., Wu, J.Y., Wang, C.F., Fu, C.C., Shieh, C.J., Chen, C.I., Wang, C.Y. & Liu, Y.C. (2010). Modeling on chlorophyll and phycocyanin production by Spirulina platensis under various light-emitting diodes. Biochemical Engineering Journal, 53(1), 52-56.
Colla, L.M., Reinehr, C.O., Reichert, C. & Costa, J.A.V. (2007). Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresource Technology, 98(7), 1489-1493.
Doke, J.M. (2005). An improved and efficient method for the extraction of phycocyanin from Spirulina sp. International Journal of Food Engineering, 1(5).
Ferreira, L.S., Rodrigues, M.S., Converti, A., Sato, S. & Carvalho, J.C. (2012). Kinetic and growth parameters of Arthrospira (Spirulina) platensis cultivated in tubular photobioreactor under different cell circulation systems. Biotechnology and Bioengineering, 109(2), 444-450.
Ho, S. H., Liao, J. F., Chen, C. Y. & Chang, J. S. (2018). Combining light strategies with recycled medium to enhance the economic feasibility of phycocyanin production with Spirulina platensis. Bioresource Technology, 247,669-675.
Lee, S. H., Lee, J. E., Kim, Y. & Lee, S. Y. (2016). The production of high purity phycocyanin by Spirulina platensis using light-emitting diodes based two-stage cultivation. Applied Biochemistry and Biotechnology, 178(2), 382-395.
Lima, G. M., Teixeira, P. C., Teixeira, C. M., Filócomo, D. & Lage, C. L. (2018). Influence of spectral light quality on the pigment concentrations and biomass productivity of Arthrospira platensis. Algal Research, 31, 157-166.
Ma, R., Lu, F., Bi, Y. & Hu, Z. (2015). Effects of light intensity and quality on phycobiliprotein accumulation in the cyanobacterium Nostoc sphaeroides Kützing. Biotechnology Letters, 37(8), 1663-1669.
Markou, G., Chatzipavlidis, I. & Georgakakis, D. (2012). Effects of phosphorus concentration and light intensity on the biomass composition of Arthrospira (Spirulina) platensis. World Journal of Microbiology and Biotechnology, 28(8), 2661-2670.
Mirón, A.S., Garcıa, M.C.C., Gómez, A.C., Camacho, F.G., Grima, E.M. & Chisti, Y. (2003). Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochemical Engineering Journal, 16(3), 287-297.
Ogbonda, K.H., Aminigo, R.E. & Abu, G.O. (2007). Influence of aeration and lighting on biomass production and protein biosynthesis in a Spirulina sp. isolated from an oil-polluted brackish water marsh in the Niger Delta, Nigeria. African Journal of Biotechnology, 6(22).
Pegallapati, A.K. & Nirmalakhandan, N. (2011). Energetic evaluation of an internally illuminated photobioreactor for algal cultivation. Biotechnology letters, 33(11), 2161.
Ravelonandro, P.H., Ratianarivo, D.H., Joannis-Cassan, C., Isambert, A. & Raherimandimby, M. (2011). Improvement of the growth of Arthrospira (Spirulina) platensis from Toliara (Madagascar): Effect of agitation, salinity and CO2 addition. Food and Bioproducts Processing, 89(3), 209-216.
Rodrigues, R. D. P., de Lima, P. F., de Santiago-Aguiar, R. S. & Rocha, M. V. P. (2019). Evaluation of protic ionic liquids as potential solvents for the heating extraction of phycobiliproteins from Spirulina (Arthrospira) platensis. Algal Research, 38, 101391.
Sánchez, M., Bernal-Castillo, J., Rozo, C. & Rodríguez, I. (2003). Spirulina (Arthrospira): an edible microorganism: a review. Universitas Scientiarum, 8(1), 7-24.
Shi, W.Q., Li, S.D., Li, G.R., Wang, W.H., Chen, Q.X., Li, Y.Q. & Ling, X.W. (2016). Investigation of main factors affecting the growth rate of Spirulina. Optik, 127(16), 6688-6694.
Soni, R.A., Sudhakar, K. & Rana, R.S. (2019). Comparative study on the growth performance of Spirulina platensis on modifying culture media. Energy Reports, 5, 327-336.
Torabi, S., Jahadi, M. & Ghasemisepro, N. (2021). Effects of Agitation and Aeration on Growth Kinetics of Spirulina platensis and Production of Natural Pigments in Stirred Photobioreactor. Research and Innovation in Food Science and Technology, 10(3), 261-272. [In Persian].
Wang, C.Y., Fu, C.C. & Liu, Y.C. (2007). Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochemical Engineering Journal, 37(1), 21-25.
Zeng, X., Danquah, M.K., Zhang, S., Zhang, X., Wu, M., Chen, X.D., Ng, I.S., Jing, K. & Lu, Y. (2012). Autotrophic cultivation of Spirulina platensis for CO2 fixation and phycocyanin production. Chemical Engineering Journal, 183, 192-197.
Zhang, L., Chen, L., Wang, J., Chen, Y., Gao, X., Zhang, Z. & Liu, T. (2015). Attached cultivation for improving the biomass productivity of Spirulina platensis. Bioresource Technology, 181, 136-142.
_||_Ajayan, K. V., Selvaraju, M. & Thirugnanamoorthy, K., (2012). Enrichment of chlorophyll and phycobiliproteins in Spirulina platensis by the use of reflector light and nitrogen sources: An in-vitro study. Biomass and Bioenergy, 47, 436-441.
Banayan, S., Jahadi, M. & Fazel, M. (2020). Investigation of factors affecting the production of chlorophyll and carotenoid pigments from Spirulina platensis using Berman platelet design. Journal of Food Microbiology, 7(2), 70-81. [In Persian].
Chen, C.Y., Kao, P.C., Tsai, C.J., Lee, D.J. & Chang, J.S. (2013). Engineering strategies for simultaneous enhancement of C-phycocyanin production and CO2 fixation with Spirulina platensis. Bioresource Technology, 145, 307-312.
Chen, H.B., Wu, J.Y., Wang, C.F., Fu, C.C., Shieh, C.J., Chen, C.I., Wang, C.Y. & Liu, Y.C. (2010). Modeling on chlorophyll and phycocyanin production by Spirulina platensis under various light-emitting diodes. Biochemical Engineering Journal, 53(1), 52-56.
Colla, L.M., Reinehr, C.O., Reichert, C. & Costa, J.A.V. (2007). Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresource Technology, 98(7), 1489-1493.
Doke, J.M. (2005). An improved and efficient method for the extraction of phycocyanin from Spirulina sp. International Journal of Food Engineering, 1(5).
Ferreira, L.S., Rodrigues, M.S., Converti, A., Sato, S. & Carvalho, J.C. (2012). Kinetic and growth parameters of Arthrospira (Spirulina) platensis cultivated in tubular photobioreactor under different cell circulation systems. Biotechnology and Bioengineering, 109(2), 444-450.
Ho, S. H., Liao, J. F., Chen, C. Y. & Chang, J. S. (2018). Combining light strategies with recycled medium to enhance the economic feasibility of phycocyanin production with Spirulina platensis. Bioresource Technology, 247,669-675.
Lee, S. H., Lee, J. E., Kim, Y. & Lee, S. Y. (2016). The production of high purity phycocyanin by Spirulina platensis using light-emitting diodes based two-stage cultivation. Applied Biochemistry and Biotechnology, 178(2), 382-395.
Lima, G. M., Teixeira, P. C., Teixeira, C. M., Filócomo, D. & Lage, C. L. (2018). Influence of spectral light quality on the pigment concentrations and biomass productivity of Arthrospira platensis. Algal Research, 31, 157-166.
Ma, R., Lu, F., Bi, Y. & Hu, Z. (2015). Effects of light intensity and quality on phycobiliprotein accumulation in the cyanobacterium Nostoc sphaeroides Kützing. Biotechnology Letters, 37(8), 1663-1669.
Markou, G., Chatzipavlidis, I. & Georgakakis, D. (2012). Effects of phosphorus concentration and light intensity on the biomass composition of Arthrospira (Spirulina) platensis. World Journal of Microbiology and Biotechnology, 28(8), 2661-2670.
Mirón, A.S., Garcıa, M.C.C., Gómez, A.C., Camacho, F.G., Grima, E.M. & Chisti, Y. (2003). Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochemical Engineering Journal, 16(3), 287-297.
Ogbonda, K.H., Aminigo, R.E. & Abu, G.O. (2007). Influence of aeration and lighting on biomass production and protein biosynthesis in a Spirulina sp. isolated from an oil-polluted brackish water marsh in the Niger Delta, Nigeria. African Journal of Biotechnology, 6(22).
Pegallapati, A.K. & Nirmalakhandan, N. (2011). Energetic evaluation of an internally illuminated photobioreactor for algal cultivation. Biotechnology letters, 33(11), 2161.
Ravelonandro, P.H., Ratianarivo, D.H., Joannis-Cassan, C., Isambert, A. & Raherimandimby, M. (2011). Improvement of the growth of Arthrospira (Spirulina) platensis from Toliara (Madagascar): Effect of agitation, salinity and CO2 addition. Food and Bioproducts Processing, 89(3), 209-216.
Rodrigues, R. D. P., de Lima, P. F., de Santiago-Aguiar, R. S. & Rocha, M. V. P. (2019). Evaluation of protic ionic liquids as potential solvents for the heating extraction of phycobiliproteins from Spirulina (Arthrospira) platensis. Algal Research, 38, 101391.
Sánchez, M., Bernal-Castillo, J., Rozo, C. & Rodríguez, I. (2003). Spirulina (Arthrospira): an edible microorganism: a review. Universitas Scientiarum, 8(1), 7-24.
Shi, W.Q., Li, S.D., Li, G.R., Wang, W.H., Chen, Q.X., Li, Y.Q. & Ling, X.W. (2016). Investigation of main factors affecting the growth rate of Spirulina. Optik, 127(16), 6688-6694.
Soni, R.A., Sudhakar, K. & Rana, R.S. (2019). Comparative study on the growth performance of Spirulina platensis on modifying culture media. Energy Reports, 5, 327-336.
Torabi, S., Jahadi, M. & Ghasemisepro, N. (2021). Effects of Agitation and Aeration on Growth Kinetics of Spirulina platensis and Production of Natural Pigments in Stirred Photobioreactor. Research and Innovation in Food Science and Technology, 10(3), 261-272. [In Persian].
Wang, C.Y., Fu, C.C. & Liu, Y.C. (2007). Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochemical Engineering Journal, 37(1), 21-25.
Zeng, X., Danquah, M.K., Zhang, S., Zhang, X., Wu, M., Chen, X.D., Ng, I.S., Jing, K. & Lu, Y. (2012). Autotrophic cultivation of Spirulina platensis for CO2 fixation and phycocyanin production. Chemical Engineering Journal, 183, 192-197.
Zhang, L., Chen, L., Wang, J., Chen, Y., Gao, X., Zhang, Z. & Liu, T. (2015). Attached cultivation for improving the biomass productivity of Spirulina platensis. Bioresource Technology, 181, 136-142.