ساخت بیوفیلم جدید بر پایه نانوذرات نشاسته، نانوذرات سلولز و عصاره سیر و بررسی خواص ضدمیکروبی آن به منظور استفاده در بسته بندی مواد غذایی
الموضوعات :فائزه حشمدار راوری 1 , سید علی یاسینی اردکانی 2
1 - دانشآموخته کارشناسی ارشد گروه علوم و صنایع غذایی، دانشکده کشاورزی و منابع طبیعی، واحد یزد، دانشگاه آزاد اسلامی، یزد، ایران
2 - دانشیار گروه علوم و صنایع غذایی، دانشکده کشاورزی و منابع طبیعی، واحد یزد، دانشگاه آزاد اسلامی، یزد، ایران
الکلمات المفتاحية: آلیسین, بیوفیلم, پلیمر, شیر, نانوذرات نشاسته, نانوذرات سلولز,
ملخص المقالة :
مقدمه: در میان انواع فناوریهای بستهبندی فعال موجود، بستهبندی ضدمیکروبی زمینهای است که بهتازگی روی آن تحقیقات بیشتری متمرکز شده است. استفاده همزمان از نانوذرات و مواد ضدمیکروب در بستهبندی غذا راهکاری جدید است. این تحقیق با هدف ساخت یک بیوفیلم بر پایه نانوکامپوزیت حاوی نانوذرات نشاسته، نانوذرات سلولز و عصاره سیر انجام گرفت که هم ویژگیهای تجزیهپذیری و هم خاصیت ضدمیکروبی داشته باشد. مواد وروشها: عصاره سیر از سیر تازه تهیه و بعد نانوذرات سلولز و نشاسته به روش شیمیایی سنتز گردید. برای تعیین ویژگیهای نانوذرات نشاسته و سلولز، تصویربرداری میکروسکوپ الکترونی روبشی به کار رفت. با افزودن مخلوط سه ماده فوق بر روی پلیمر پلی اتیلن یک بیوفیلم تهیه شد که از نظر خاصیت ضدمیکروبی بر علیه دو باکتری، یک مخمر و یک کپک به تنهایی و در حضور شیر تا ۶ هفته بررسی شد. دادهها با تست آماری t-test مقایسه شدند. معیار 05/0p< برای تعیین معنیداری اختلاف داده ها بکار رفت. آنالیزهای آماری با استفاده از نرمافزار SPSS نسخه 16 انجام شد. یافتهها: بیوفیلم تهیهشده بر روی اشریشیا کلای بالاترین خاصیت ضدمیکروبی را داشت (با قطر هاله عدم رشد حدود 5/8 سانتیمتر اطراف بیوفیلم). اثر ضدمیکروبی بیوفیلم سنتز شده در حضور شیر آلوده (بعنوان مدل بسته بندی شیر) بهطور معنیداری نسبت به کنترل، که حاوی هیچگونه بیوفیلمی نبود، بالاتر بود. نتیجهگیری: با نانوذرات نشاسته، سلولز و عصاره سیر که روی یک پلیمر قرار میگیرند میتوان بیوفیلم ضدمیکروبی مناسبی تهیه نمود. نتایج حاصل از این پژوهش میتواند رویکرد جدیدی بهسوی استفاده از بستهبندیهای فعال ضدمیکروبی در صنایع غذایی جهت بهبود کیفیت، ایمنی و کاهش زبالههای حاصل از غذا بحساب آید.
Alexandre, M. & Dubois, P. (2000). Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. MSE: R: Reports, 28(1), 1-63.
Amiot, M. J., Tacchini, M., Aubert, S. & Nicolas, J. (1992). Phenolic composition and browning susceptibility of various apple cultivars at maturity. J F SCI, 57(4), 958–962.
Ankri S., Miron T., Rabinkov A., Wilchek M. & Mirelman D. (1997). Allicin from garlic strongly inhibits cysteine proteinases and cytopathic effects of Entamoeba histolytica. ANTIMICROB AGENTS CH, 10, 2286–2288.
Ankri, S. & Mirelaman, D. (1999). Antimicrobial properties of allicin from garlic. MICROBES INFECT, 2, 125-129.
Appendini, P. & Hotckie, J. (2002). Review of Antimicrobial Food Packaging. INNOV Food Sci Emerg, 3, 113-126.
Banon, S., Diaz, P., Rodriguez, M., Garrido, M. D. & Price, A. (2007). Ascorbate, green teaand grape seed extracts increase the shelf lifeo flow sulphite beef patties. MEAT SCI. 77626–633.doi:10٫1016/j.meatsci.2007.05.015.
Bi, L., Yang, L., Narsimhan, G., Bhunia, A. K. & Yao, Y. (2011). Designing carbohydrate nanoparticles for prolonged efficacy of antimicrobial peptide. J Control Release,
150(2), 150-156.
Bordes, P., Pollet, E. & Avérous, L. (2009). Nano-biocomposites: biodegradable polyester /
nanoclay systems. Prog Poly M Sci, 20,125–55.
Burt, S. (2004). Essential oils: their antibacterial properties and potential applications infoods-areview. Int. J. Food Microbiol. 94223–253. doi: 10٫1016/ j. ijfoodmicro. 2004. 03. 022.
Carpenter, R., O’Grady, M. N., O’Callaghan, Y. C., O’Brien, N. M. & Kerry, J. P. (2007). Evaluation of the antioxidant potential of grape seed and bear berry extracts in raw and cooked pork. Meat Sci. 76604–610.doi: 10٫1016/j.MEAT SCI.2007.01.021.
Chen, Y., Liu, C., Chang, P. R., Cao, X. & Anderson, D. P. (2009). Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohyd Poly M, 76(4), 607-615.
Cioffi, N., Torsi, L., Ditaranto, N., Tantillo, G., Ghibelli, L., Sabbatini, L., Bleve-Zacheo, T., D’alessio, M., Zambonin, P. G. & Traversa, E. (2005). Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater, 17, 5255–5262.
Coma, V. (2008). Bioactive packaging technologies for extending shelf life of meat-based products, Meat Sci., 78, 90-103.
Coseteng, M. Y. & Lee, C. Y. (1987). Changes in apple polyphenol oxidase and polyphenol concentrations in relation to degree of browning. J Food Sci., 52(4), 985–989.
Damm C, Münsted H, Rösch A. (2008). The antimicrobial efficacy of polyamide 6/silver nano- and microcomposites. Mater Chem Phys., 108, 61–66.
De Azeredo, H. M. (2009). Nanocomposites for food packaging applications. Food Res Int, 42(9), 1240-1253.
Del Nobile, M. A., Conte, A., Incoronato, A. L. & Panza, O. (2008). Antimicrobial efficacy and release kinetics of thymol from zein films. J Food Eng., 89, 57-63.
Durairaj S., Sangeetha, S. & Lakshmanaperumalsamy, P. (2009). In vitro antibacterial activity and stability of garlic extract at different pH and temperature. Elect Ron J Biotech., 5, 5–10.
EC. (2009). EU guidance to the commission regulation on active and
intelligent materials and articles intended to come into contact with food. European Commission.
Emiroglu, Z. K., Yemiş, G. P., Coşkun, B. K. & Candoğan, K. (2010). Antimicrobial activity of soy edible films incorporated with thyme and oregano essential oils on fresh ground beef patties. Meat Sci., 86(2), 283-288.
Grande, C. J., Torres, F. G., Gomez, C. M., Troncoso, O. P., Canet-Ferrer, J. & Martínez-Pastor, J. (2009). Development of self-assembled bacterial cellulose–starch nanocomposites. Mat Sci Eng., 29 (4), 1098-1104.
Gutierrez, L., Sánchez, C., Batlle, R. & Nerin, C. (2009). antimicrobial active package for bakery products. Trends Food Sci Tech., 2092–99.doi: 10٫1016/j.tifs.2008.11.003.
Hong, S. I., Park, J. D. & Kim, D. M. (2000). Antimicrobial and physical properties of food packaging films incorporated with some natural compounds, Food Sci Biotechnol., 9, 38-42.
Hovana, E. K., James, U. S., James, E., Egbobor, E. M., Egba, A. G., Nwachukwu, O. A. & Akpama, O.U. (2011). Antibacterial and Phytochemical Studies of Allium Sativum. New York Sci J., 4,124-128.
Ilic, D., Nikolic, V., Ciric, A., Soković, M., Stanojkovic, T., Kundakovic, T., Stankovic, M. & Nikolić, L. (2012). Cytotoxicity and antimicrobial activity of allicin and its transformation products. J. Medi. Plants Research, 6, 59-65.
Jebali, A., Hekmatimoghaddam, S. H. & Behzadi, A. (2013). Antimicrobial activity of nanocellulose conjugated with allicin and lysozyme. Cellulose, 20(6), 2897-2907.
Joe, M. M., Jayachitra, J. & Vijayapriya, M. (2009). Antimicrobial activity of some common spices against certain human pathogens. J. Med Plants R 3, 1134-1136.
Morán, J. I., Vázquez, A. & Cyras, V. P. (2013). Bionanocomposites based on derivatized potato starch and cellulose, preparation and characterization. J Mater Sci., 48(20), 7196-7203.
Negi, P. S. (2012). Plant extracts for the control of bacterial growth: efficacy, stability and safety issues for food application. Int J Food Microbiol.,1567–17.doi: 10. 1016 /j.ijfoodmicro. 2012.03.006.
Palaksha, M. N., Ahmed, M. & Das, S. (2010). Antibacterial activity of garlic extracts
Pandey, J. K., Kumar, A. P., Misra, M., Mohanty, A. K., Drzal, L. T. & Palsingh, R. (2005). Recent advances in biodegradable nanocomposites. J Nanosci Nanotech O., 5(4), 497-526.
Rhim, J. W., Hong, S. I., Park, H. M. & Ng, P. K. W. (2006). Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J AGR Food Chem., 54, 5814–5822.
Rhim, J. W. & Ng, P. K. (2007). Natural biopolymer-based nanocomposite films for packaging applications. Crit Rev Food Sci., 47(4), 411-433.
Rhim, J. W., Park, H. M. & Ha, C. S. (2013). Bio-nanocomposites for food packaging applications. Prog Poly M Sci., 38(10), 1629-1652.
Saad, B. & AlBureikan, M. O. (2013). Antimicrobial Activity of Garlic Juice (Allium Sativum), Honey, And Garlic-Honey Mixture On Some Sensitive and Multiresistant Microorganisms. Life Sci J., 10(4).
Silveira, M. F. A., Soares, N. F. F., Geraldine, R. M., Andrade, N. J. & Goncalves, M. P. J. (2007). Antimicrobial efficiency and sorbic acid migration from active films into pastry dough. Package Tech Sci., 20(4), 287-292.
Siró, I. & Plackett, D. (2010). Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose, 17(3), 459-494.
Smith-Palmer, A., Stewart, J. & Fyfe, L. (2001). The potential application of plant essential oils as natural food preservatives in soft cheese. Food Microbial., 18, 463–470. doi: 10. 1006/ fmic. 2001٫0415.
Sozer, N., Dogan, H. & Kokini, J. L. (2011). Textural properties and their correlation to cell structure in porous food materials. J Agr Food Chem., 59(5), 1498-1507.
Victor I. U. & Igeleke, C. L. (2012). Antimicrobial properties of the extracts of locally sold garlic and neem leaf in Benin City, Nigeria. Int J Biosci., 2, 21-27.
Wang, X., Du, Y., Yang, J., Wang, X., Shi, X. & Hu, Y. (2006). Preparation, characterization and antimicrobial activity of chitosan/layered silicate nanocomposites. Polymer, 47, 6738–6744.
_||_