Butter Separation from Cream Using Ultrasonication: Optimization of Parameters Using RSM
الموضوعات :B. Maheshwari 1 , R. Saravanathamizhan 2 , N. Balasubramanian 3
1 - Department of Chemical Engineering, A. C. Tech Campus, Anna University, Chennai-600025, India.
2 - Department of Chemical Engineering, A. C. Tech Campus, Anna University, Chennai-600025, India.
3 - Department of Chemical Engineering, A. C. Tech Campus, Anna University, Chennai-600025, India.
الکلمات المفتاحية: Butter Yield, Cream, Response Surface Methodology, Separation, Ultrasound,
ملخص المقالة :
Butter is separated from cream using ultrasonication method. The efficiency of butter preparation is evaluated with respect to various parameters such as time, dilution, fermentation time using ultrasonication at room temperature and compares the yield with conventional stirring method. All the parameters were critically studied and it is observed maximum yield was obtained for sonication time at 30 min, 1:10 dilution and the fermentation time of 18h. Experimental parameters for butter separation have been optimized for maximum yield of butter using Response Surface Methodology. It has been observed from the present analysis that the predicted values are in good agreement with the experimental data with a correlation coefficient of 0.956. It is also observed that the butter prepared from ultrasonication method produce higher yield, lesser time to produce butter and homogenized butter grains obtained compared to conventional method. The viscosity and pH are same when compared to commercial butter and having the fat content of 83.14 %.
Ajala, E. O. Aberuagba, F., Olaniyan A. M. & Onifade, K. R. (2016). Optimization of solvent extraction of shea butter (Vitellariaparadoxa) using response surface methodology and its characterization. J. Food Sci. Techn., 53, 730-738. Almanza-Rubio, A. & José, L. (2016). Modification of the textural and rheological properties of cream cheese using thermosonicated milk. J. Food Eng., 168, 223-230. Anon. (1995). Handbook of Dairy Processing. Tetra Pak Processing Systems AB. Lund, Sweden, 263-285.
Ashokkumar, M. (2015). Applications of ultrasound in food and bioprocessing. Ultrason. Sonochem. 25, 17-28.
Ashokkumar, M., Sunartio, D., Kentish, S., Mawson, R., Simons, L., Vilkhu, K. & Versteeg, C. K. (2008). Modification of food ingredients by ultrasound to improve functionality: a preliminary study on a model system. Inn. Food Sci. Emerg. Technol. 9, 155-168. Bermúdez-Aguirre, D. & Barbosa-Cánovas, G. V. (2008). Study of butter fat content in milk on the inactivation of Listeria innocua ATCC 51742 by thermo-sonication. Inn. Food Sci. Emerg. Technol. 9, 176-185.
Chandrapala, J., Zisu, B., Palmer, M., Kentish, S. & Ashokkumar, M. (2011). Effects of ultrasound on the thermal and structural characteristics of proteins in reconstituted whey protein concentrate. Ultrason. Sonochem. 18, 951-959.
Chemat, F., Huma, Z. & Khan, M. K. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason. Sonochem, 18, 813-824.
Goudédranche, H., Fauquant, J. & Maubois, J. L. (2000). Fractionation of globular milk fat by membrane microfiltration, Lait, 80, 93-98.
Juliano, P., Temmel, S., Rout, M., Swiergon, P., Mawson, R. & Knoerzer, K. (2013). Creaming enhancement in a liter scale ultrasonic reactor at selected transducer configurations and frequencies. Ultrason. Sonochem. 20, 52-62.
Karageorgou, E., Armeni, M., Moschou, I. & Samanidou, V. (2014). Ultrasoundassisted dispersive extraction for the high pressure liquid chromatographic determination of tetracyclines residues in milk with diode array detection. Food Chemistry. 150, 328-339.
Leong, T., Johansson, L., Mawson, R., Mcarthur, S. L., Manasseh, R. & Juliano, P. (2016). Ultrasonically enhanced fractionation of milk fat in a litre-scale prototype vessel. Ultrason. Sonochem. 28, 118-129.
Leong, T., Johansson, L., Juliano, P., Mawson, R., Mcarthur, S. & Manasseh, R. (2014). Design parameters for the separation of fat from natural whole milk in an ultrasonic litre-scale vessel. Ultrason. Sonochem. 21, 1289-1298. Leong, T., Juliano, P., Johansson, L., Mawson, R., Mcarthur, S. L. & Manasseh, R. (2014). Temperature effects on the ultrasonic separation of fat from natural whole milk. It has Ultrason. Sonochem. 21, 2092-2098.
Liu, Z., Juliano, P., Williams, R. P. W., Niere, J. & Augustin, M. A. (2014). Ultrasound improves the renneting properties of milk. Ultrason. Sonochem. 21, 2131-2137.
Martini, S., Suzuki, A. H. & Hartel, R. W. (2008). Effect of high intensity ultrasound on crystallization behavior of anhydrous milk fat. J. American oil Chemists’ soc., 85, 621-629.
Mohammadi, V., Varnamkhasti, M. G., Ebrahimi, R. & Abbasvali, M. (2014). Ultrasonic techniques for the milk production industry. Measurement, 58, 93-102.
Muthukumaran, S., Kentish, S., Ashokkumar, M. & Stevens, G. (2005). Mechanisms for the ultrasonic enhancement of dairy whey ultrafiltration. Journal of Membrane Science, 258, 106-118.
Nguyen, T. M. P., Lee, Y. K. & Zhou, W. (2012). Effect of high intensity ultrasound on carbohydrate metabolism of bifidobacteria in milk fermentation. Food Chemistry, 130, 866-874.
Rønholt, S., Kirkensgaard, J. J. K., Pedersen, T. B., Mortensen, K. & Knudsen, J. C. (2012). Polymorphism, microstructure and rheology of butter. Effects of cream heat treatment. Food chemistry, 135, 1730-1739.
Rønholt, S., Madsen, A. S. Kirkensgaard, J. J. K., Mortensen, K. & Knudsen, J. C. (2014). Effect of churning temperature on water content, rheology, microstructure and stability of butter during four weeks of storage, Food structure. 2, 14-26.
Schneider, Y., Zahn, S., Schindler, C. & Rohm, H. (2009). Ultrasonic excitation affects friction interactions between food materials and cutting tools. Ultrasonics, 49, 588-595.
Shanmugam, A. & Ashokkumar, M. (2014). Ultrasonic preparation of stable flax seed oil emulsions in dairy systems – physicochemical characterization. Then it is that he’s in a zone as Al Hinman the Food Hydrocolloids, 39, 151-156.
Shanmugam, A., Chandrapala, J. & Ashokkumar, M. (2012). The effect of ultrasound on the physical and functional properties of skim milk. Inn. Food Sci. Emerg. Technol. 16, 251-258. Suh, M. H., Lee, K. B. & Baick, S. C. (2012). Optimization of the Spreadable Modified Butter Manufacturing by Response Surface Methodology. Korean Journal for Food Science of Animal Resources, 32, 783-788.
Tammineedi, C. V., Choudhary, R., Perez-Alvarado, G. C. & Watson, D. G. (2013). Determining the effect of UV-C, high intensity ultrasound and nonthermal atmospheric plasma treatments on reducing the allergenicity of a-casein and whey proteins. LWT-Food Sci.Technol. 54, 35-48.
Uluko, H., Li, H., Cui, W., Zhang, S., Liu, L., Chen, J., Sun, Y., Su, Y. & Lv, J. (2013). Response surface optimization of angiotensin converting enzyme inhibition of milk protein concentrate hydrolysates in vitro after ultrasound pretreatment. Inn. Food Sci. Emerg. Technol. 20, 133-145.
Wu, H., Hulbert, G. J. & Mount, J. R. (2000). Effects of ultrasound on milk homogenization and fermentation with yogurt starter, Inn. Food Sci. Emerg. Technol. 1, 211-218.
Zisu, B., Schleyer, M. & Chandrapala, J. (2013). Application of ultrasound to reduce viscosity and control the rate of age thickening of concentrated skim milk. Int. Dairy J. 31, 41-52