Characterization of a Traditional Egg-Free Crème Caramel Dessert Containing Chlorella protothecoides
الموضوعات :
1 - MSc Student of the Department of Food Science & Technology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
2 - Associate Professor of the Department of Food Science & Technology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
الکلمات المفتاحية: Chlorella protothecoides, Crème Caramel, Egg-Free, Nutritional Properties,
ملخص المقالة :
Crème caramel is sugar heated and turned into brown syrup to which milk and eggs are then added therefore each of its unit contains 200 kcal of energy for the consumer. Chlorella protothecoides is considered one of the commercially important microalgae due to its high nutritional potential and considerable energy content. This alga is used for the industrial production of lutein. Moreover, it contains high levels of fats, proteins, and fiber. It also has emulsifying properties for industrial applications. This research studied the effect of adding Chlorella protothecoides (0, 1, 2.5, and 4 gr/100 gr) on some properties of traditional crème caramel dessert. The results indicated that protein, calcium, phosphorous, and the oleic, linoleic, and linolenic fatty acids contents of the dessert increased when higher percentages of Chlorella protothecoides were added to its formulation (p<0.05). In general, the sample containing 4.0 gr/100 gr Chlorella protothecoides had higher overall acceptability score and titratable acidity, and more desirable nutritional properties compared to those containing lower percentages of this microalgae; it showed the maximum viscosity and protein content, the largest contents of carotenoid pigments, phosphorous, and calcium and the highest percentages of oleic, linoleic and linolenic fatty acids, and alpha-tocopherol.
AACC. (2011). American Association for Clinical Chemistry. Approved Methods of Analysis., USA.
Abdel-Aal, M., Akhtar, H., Zaheer, K. & Ali, R. (2013). Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. Nutrients, 5 (4), 1169-1185.
Abd El-Baky, H. H., El-Baz, F. K. & El-Baroty, G. S. (2009). Natural preservative ingredient from marine alga Ulva lactuca L. International Journal of Food Science and Technology, 44 (9), 1688–1695.
Alves, C., Pinteus, S., Simões, T., Horta, A., Silva, J., Tecelão, C. & Pedrosa, R. (2016). Bifurcaria bifurcata: a key macro-alga as a source of bioactive compounds and functional ingredients. International Journal of Food Science and Technology, 51 (7), 1638–1646.
Anon. (2007a). Animal feeding stuffs –Determination of amino acids content, No 10699. 1st ed. Standards and Industrial Research Organization of Iran., Iran.
Anon. (2003b). Cereal and cereal products- Durum wheat flour- Determination of yellow pigment content, No 7123. 1st ed. Standards and Industrial Research Organization of Iran., Iran.
Anon. (2001). Determination of thiamin, Riboflavin, Pyridoxin, niacin, and folic acid in dry vitamin supplements by high performance liquid chromatography (HPLC), No 5533. 1st ed. Standards and Industrial Research Organization of Iran., Iran.
Anon. (2007b). Food - Measuring the amount of lead, cadmium, copper,Iron and zinc –optical atomic absorption spectrometry, No 9266. 1sted. Standards and Industrial Research Organization of Iran., Iran.
Anon. (2010). Foodstuffs - Determination of vitamin D by high performance liquid chromatography- Measurement of cholecalciferol (D3) or ergocalciferol, No 13579. 1st ed. Standards and Industrial Research Organization of Iran., Iran.
Anon. (1995). Sensory analysis - determination of sensitivity of taste, No 2442. 2 nd ed. Standards and Industrial Research Organization of Iran., Iran.
Anon. (2014). Sensory analysis — Methodology —Method of investigating sensitivity of Taste, No 18544. 1st ed. Standards and Industrial Research Organization of Iran., Iran.
Anon. (2003a). Vitamin premixes – Determination of vitamin A by spectrophotometry, No 7149. 1st ed. Standards and Industrial Research Organization of Iran., Iran.
Arab-Tehrany, E., Jacquot, M., Gaiani, C., Imran, M., Desobry, S. & Linder, M. (2012). Beneficial effects and oxidative stability of omega-3 long-chain polyunsaturated fatty acids. Trends in Food Science and Technology, 25, 24-33.
Bayarri, S., Chuliá, I. & Costell, E. (2010). Comparing λ-carrageenan and an inulin blend as fat replacers in carboxy methyl cellulose dairy desserts. Rheological and sensory aspects. Food Hydrocolloids, 24, 587-578.
Belitz, H. D., Grosch, W. & Schieberle, P. (2009). Food chemistry. 4th revised and extended ed. Springer. Berlin Heidelberg.
Celebi, S. & Macit, M. (2008). The effects of sources of supplemental fat on performance, egg quality, and fatty acid composition of egg yolk in laying hens. Journal of the Science of Food and Agriculture, 88 (13), 2382–2387.
Chen, Y. C., Nguyen, J., Semmens, K., Beamer, S. & Jaczynski, J. (2007). Physicochemical changes in ω-3-enhanced farmed rainbow trout (Oncorhynchus mykiss) muscle during refrigerated storage. Food Chemistry, 104: 1143-1152.
Damodaran, S., Parkin, K. & Fennema, O. R. (2007). Fennema's Food Chemistry. 4th ed. CRC Press., United States.
Danesi, E., Navacchi, M., Takeuchi, K., Frata, M., Carlos, J. & Carvalho, M. (2010). Application of Spirulina platensis in protein enrichment of Manico based bakery products. Journal of Biotechnology, 150, 311-315.
De Morais, E. C., Lima, G. C., De Morais, A. R. & Bolini, H. M. A. (2015). Prebiotic and diet/light chocolate dairy dessert: Chemical composition, sensory profiling and relationship with consumer expectation. LWT - Food Science and Technology, 62, 424-430.
Fradique, M., Batista, A., Nunes, M., Gouveia, L., Bandarra, N. & Raymund, A. (2010). Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products. Part 1: Preparation and evaluation. Journal of the Science of Food and Agriculture, 90 (10), 1656-1664.
García, V., Laca, A., Martínez, L. A., Paredes, B., Rendueles, M. & Díaz, M. (2015). Development characterization of a new sweet egg-based dessert formulation. International Journal of Gastronomy and Food Science, 2,72-82.
Gómez-Estaca, J., Calvo, M. M., Álvarez-Acero, I. & Montero, P. (2017). Characterization and storage stability of astaxanthin esters, fatty acid profile and a-tocopherol of lipid extract from shrimp (L. vannamei) waste with potential applications as food ingredient. Food Chemistry, 216, 37-44.
Gonza´ lez-Toma, L., Bayarri, S., Taylor, A. J. & Costell, E. (2008). Rheology, flavour release and perception of low-fat dairy desserts. International Dairy Journal, 1, 858–866.
Gouveia, L., Batista, A. P., Sousa, I., Raymundo, A. & Bandarra, N. M. (2008a). Microalgae in novel food product. in: Food Chemistry Research. Papadopoulos K N. Chapter 2. Nova Science Publishers. Hauppauge New York., 1-37.
Gouveia, L., Batista, A., Miranda, A., Empis, J. & Raymundo, A. (2007). Chlorella vulgaris Biomass used as coloring source in traditional butter cookies. Innovative Food Science and Emerging Technologies, 8. 433-436.
Gouveia, L., Coutinho, C., Mendonca, E., Batista, A. P., Sousa, I., Bandarra, N. & Raymundo, A. (2008b). Functional biscuits with PUFA-ω3 from Isochrysis galbana. Journal of the Science of Food and Agriculture, 88, 891-896.
Guedesn, A. C., Barbosa, C. R., Amaro, H. M., Pereira, C. I. & Malcata, F. X. (2011). Microalgal and cyanobacterial cell extracts for use as natural antibacterial additives against food pathogens. International Journal of Food Science and Technology, 46 (4), 862–870.
Gutierrez-Salmean, G., Fabila-Castillo, L. & Chamorro-Cevallos, G. (2015). Nutritional and toxicological aspects of Spirulina (Arthrospira). Nutrición Hospitalaria, 32 (1), 34-40.
Heredia-Arroyo, T., Wei, W. & Hu, B. (2010). Oil Accumulation via Heterotrophic/Mixotrophic Chlorella protothecoides. Applied Biochemistry and Biotechnology, 162, 1978–1995.
Joell, E. & Amanda, C. (2006). Sensory Evaluation Ratings and Melting Characteristics Show that Okra Gum is an Acceptable Milk-Fat ingredient Substitute in Chocolate Frozen Dairy Dessert. Journal of American Diet, 106, 594-597.
Jun, J. Y., Nakajima, S., Yamazaki, K., Kawai, Y., Yasui, H. & Konishi, Y. (2015). Isolation of antimicrobial agent from the marine algae Cystoseira hakodatensis. International Journal of Food Science and Technology, 50 (4), 871–877.
Lethuaut, L., Brossard, C., Rousseau, F., Bousseau, B. & Genot, C. (2003). Sweetness-texture interactions in model dairy dessert: effect of sucrose concentration and the Carrageenan type. International Dairy Journal, 13, 631-641.
Li-Chan, E. & Kim, H. (2008). Structure and chemical compositions of eggs. In Mine, Y. (Eds). Egg Bioscience and Biotechnology., p. 9-15. USA: John Wiley and Sons, Inc.
Mamatha, B. S., K.K. Namitha., Amudha, Senthil., Smitha, J. & Ravishankar, G. A. (2007). Studies on use of Enteromorpha in snack food. Food Chemistry, 101 (4), 1707-1713.
Morais, E. C., Morais, A. R., Cruz, A. G. & Bolini, H. M. (2014). Development of chocolate dairy dessert with addition of prebiotics and replacement of sucrose with different high- intensity sweeteners. Journal of Dairy Science, 97 (5), 2600-2609.
Najdenski, H. M., Gigova, L. G., Iliev, I. I., Pilarski, P. S., Lukavský, J., Tsvetkova, I.V., Ninova, M. S. & Kussovski, V. K. (2013). Antibacterial and antifungal activities of selected microalgae and cyanobacteria. International Journal of Food Science and Technology, 48 (7), 1533–1540.
Powell, R. C., Nevels, E. M. & McDowell, M. E. (1961). Algae Feeding in Human. Journal of Nutrition, 75, 7- 12.
Prabhasankar, P., Ganesan, P. & Bhaskar, N. (2009). Influence of Indian brown seaweed (Sargassum marginatum) as an ingredient on quality, biofunctional, and microstructure characteristics of pasta. Food Science and Technology International, 15 (5), 471-479.
Pulz, O. & Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology Biotechnology, 65, 635–648.
Raymundo, A., Gouveia, L., Batista, A.P., Empis, J. & Sousa, I. (2005). Fat mimetic capacity of Chlorella vulgaris biomass in oil-in-water food emulsions stabilized by pea protein. Food Research International, 38, 961-965.
René, A., Leo, G., Terpstra, M. & Wilkinson, L. (2003). Texture of semi-solids; sensory and instrumental measurements on vanilla custard desserts. Food Quality and Preference, 14, 305-317.
Siriwardhana, N., Kim, K. M., Lee, K.W., Kim, S. H., Ha, J. H., Song, C. B., Lee, J. B. & Jeon, Y. J. (2008). Optimization of hydrophilic antioxidant extraction from Hizikiafusiformis by integrating treatments of enzymes, heat and pH control. International Journal of Food Science and Technology, 43 (4), 587–596.
Specter, S. E. & Setser, C. S. (1994). Sensory and Physical Properties of a Reduced – Calorie Frozen Dessert System made with Milk-Fat and Sucrose Substitutes. Journal of Dairy Science, 77 (3), 708- 717.
Szabo, N. J., Matulka, R. A., Kiss, L. & Licari, P. (2012). Safety evaluation of a high lipid Whole Algalin Flour (WAF) from Chlorella protothecoides. Regulatory Toxicology and Pharmacology, 63, 155-165.
Tamime, A. Y. (2009). Milk processing and Quality Management. 1st ed. Blackwell publishing Ltd., United Kingdom.
Tichivangana, J. Z. & Morrissey, P. A. (1985). Metmyoglobin and inorganic metals as pro-oxidants in raw and cooked muscle systems. Meat Science, 15: 107-116.
Vahmani, P., Fredeen, A. H. & Glover, K. E. (2013). Effect of supplementation with fish oil or microalgae on fatty acid composition of milk from cows managed in confinement or pasture systems. Journal of Dairy Science, 96 (10), 6660–6670.
Walstra, P., Wouters, J. T. M. & Geurts, T. J. (2006). Dairy Science and Technology. 2nd ed. Taylor & Francis group., New York.
Wei, D., Chen, F., Chen, G., Zhang, X. W., Liu, L. J. & Zhang, H. (2008). Enhanced production of lutein in heterotrophic Chlorella protothecoides by oxidative stress. Science China Life Sciences, 51 (12), 1088–1093.
Zhao, C., Wu, Y., Yang, C., Liu, B. & Huang, Y. (2015). Hypotensive, hypoglycaemic and hypolipidaemic effects of bioactive compounds from microalgae and marine micro-organisms. International Journal of Food Science and Technology, 50 (8), 1705–1717.