اثر پلاریزاسیون غلظتی در فرآیند شیرینسازی آب به روش اسمز مستقیم (مروری)
الموضوعات :محسن باهوش 1 , اسلام کاشی 2 , سهیلا شکرالله زاده 3
1 - دکتری مهندسی شیمی، سازمان پژوهشهای علمی و صنعتی ایران، تهران، ایران.
2 - استادیار پژوهشکده فناوریهای شیمیایی، سازمان پژوهشهای علمی و صنعتی ایران، تهران، ایران.
3 - دانشیار پژوهشکده فناوریهای شیمیایی، سازمان پژوهشهای علمی و صنعتی ایران، تهران، ایران. *(مسوول مکاتبات)
الکلمات المفتاحية: غشا, اسمز مستقیم, پلاریزاسیون غلظتی خارجی, نمکزدایی, پلاریزاسیون غلظتی داخلی,
ملخص المقالة :
زمینه و هدف: انرژی و آب دو عامل از مهمترین عوامل چالشبرانگیز هستند که بشر در هزاره سوم با آنها مواجه است. در این میان روشهای مختلفی برای نمکزدایی آب بهکاربرده شده که ضمانت اجرایی و صنعتی شدن این روشها، بهینه بودن آنها ازلحاظ مصرفانرژی و داشتن بازده مناسب است. یکی از این روشها، استفاده از فرآیند اسمزی است که خود به دو بخش اسمز معکوس و اسمز مستقیم تقسیم میشود. در حال حاضر، فرآیند اسمز معکوس به صورت وسیع در مقیاس صنعتی بهکاربرده می شود. فرآیند اسمز مستقیم طیدههاخیر موردتوجه قرارگرفته و در راه تجاری شدن با چالشهای جدی مواجه است. ازجمله عوامل تأثیرگذار در فرآیند اسمز مستقیم میتوان به: خواص محلول خوراک و محلول کِشنده (اسمزی)، پلاریزاسیون غلظتی، جهت غشا، گزینشپذیری و توانایی غشا در عدم عبور حلشوندههای موجود در محلولهای دو طرف غشا، ایجاد اختلاف فشار اسمزی بالا و قابلیت بازیابی آسان محلول کشنده، اشاره کرد. روش بررسی: در این مقاله پدیده پلاریزاسیون غلظتی، مدل های ریاضی حاکم بر آن و روشهای کاهش آن بهصورت مروری موردمطالعه قرارگرفته است. یافتهها: راهکارهای مهمی برای کاهش پلاریزاسیون غلظتی، تغییر ساختار غشاء و بهینه سازی شرایط فرایندی و محلول کشنده توسط پژوهشگران موردبررسی قرارگرفتهاند. نتیجهگیری: با اینکه پلاریزاسیون غلظتی تأثیر مهمی بر کاهش شار آب عبوری از غشا دارد، بهطوریکه پلاریزاسیون غلظتی داخلی میتواند شار آب را تا حدود 80% شار آب عبوری اولیه کاهش دهد، ولی میتوان با اتخاذ شرایط عملیاتی مناسب و بهینهسازی ساختارغشا آثار منفی آن را کاهش داد.
- WWAP (World Water Assessment Programme),2012. The United Nations World Water Development Report 4: Managing Water under Uncertainty and Risk. Paris, UNESCO.
- Seckler, D., Amarasinghe, U., Molden, D., De Silva, R., Barker, R.,1998. World water demand and supply,1990 to 2025: Scenarios and issues. International Water Management Institute Research Report, 19.
- Amarasinghe, U.A., Smakhtin, V.,2014. Global water demand projections: Past, present and future. International Water Management Institute (IWMI) Research Report.156.
- McGinnis, R.L., Elimelech, M.,2007. Energy requirements of ammonia–carbon dioxide forward osmosis desalination. Desalination, Vol. 207(1–3), pp:370-82.
- Achilli, A., Cath, T.Y., Marchand, E.A., Childress, A.E.,2009. The forward osmosis membrane bioreactor: A low fouling alternative to mbr processes. Desalination, Vol, 239, pp:10–21.
- Mi, B., Elimelech, M.,2010. Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents. Journal of Membrane Science, Vol. 348(1–2), pp:337-45.
- Holloway, R.W., Cath, T.Y., Dennett, K.E., Childress, A.E.,2005. Forward osmosis for concentration of anaerobic digester centrate. Water research, Vol. 41(17), pp:4005-14.
- McCutcheon, J.R., Elimelech, M.,2006. Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis. Journal of Membrane Science. Vol. 284, pp:237–47.
- Akther, N., Sodiq, A., Giwa, A., Daer, S., Arafat, H.A., Hasan, S.W.,2015. Recent advancements in forward osmosis desalination: A review. Chemical Engineering Journal. Vol. 281, pp:502-22.
- Hoek, E.M.V., Guiver, M., Nikonenko, V., Tarabara, V.V., Zydney, A.L.,2013. Membrane terminology, encyclopedia. Membrane Science Technology, PP:2219–28.
- Cath, T.Y., Childress, A.E., Elimelech, M.,2006. Forward osmosis: Principles, applications, and recent developments. Journal of Membrane Science, Vol. 281(1–2), pp:70-87.
- Zhao, S., Zou, L., Tang, C.Y., Mulcahy, D.,2012. Recent developments in forward osmosis: Opportunities and challenges. Journal of Membrane Science, Vol. 396, pp:1-21.
- Seppala, A., Lampinen, M.J.,2004. On the non-linearity of osmotic flow. Experimental Thermal and Fluid Science, Vol. 28, pp:283–96.
- McCutcheon, J.R., McGinnis, R.L., Elimelech, M.,2006. Desalination by ammonia–carbon dioxide forward osmosis: Influence of draw and feed solution concentrations on process performance. Journal of Membrane Science, Vol. 278(1–2), pp:114-23.
- Kim, J., Jeong, K., Jun Park M., Ho, K.S., Joon, H.K.,2015. Recent advances in osmotic energy generation via pressure-retarded osmosis (pro): A review. Energies, Vol. 8, pp:11821-45.
- Qasim, M., Darwish, N.A., Sarp, S., Hilal, N., 2015. Water desalination by forward (direct) osmosis phenomenon: A comprehensive review. Desalination, Vol. 374, pp:47-69.
- Elimelech, M., Bhattacharjee, S.,1998. A novel approach for modeling concentration polarization in crossflow membrane filtration based on the equivalence of osmotic pressure model and filtration theory. Journal of Membrane Science, Vol. 145, pp:223–41.
- Sablani, S.S., Goosen, M.F.A., Al-Belushi, R., Wilf, M.,2001. Concentration polarization in ultrafiltration and reverse osmosis: A critical review. Desalination, Vol. 141, pp:269–89.
- Gruber, M.F., Johnson, C.J., Tang, C.Y., Jensen, M.H., Yde, L., Helix-Nielsen, C.,2011. Computational fluid dynamics simulations of flow and concentration polarization in forward osmosis membrane systems. Journal of Membrane Science, Vol. 379(1–2), pp:488-95.
- Nematzadeh, M., Samimi, A., Shokrollahzadeh, S.,2016. Application of sodium bicarbonate as draw solution in forward osmosis desalination: influence of temperature and linear flow velocity. Desalination and Water Treatment, Vol. 57, pp:20784-91.
- Song, L., Elimelech, M.,1995. Theory of concentration polarization in crossflow filtration. Journal of Chemical Society Faraday Trans, Vol. 91, pp:3389–98.
- McCutcheon, J.R., Elimelech, M.,2007. Modeling water flux in forward osmosis: Implications for improved membrane design. AIChE Journal, Vol. 53, pp:1736–44.
- Mulder, M.,1996. Basic principles of membrane technology: Springer Science & Business Media;
- Su, J., Chung, T.S.,2011. Sublayer structure and reflection coefficient and their effects on concentration polarization and membrane performance in fo processes. Journal of Membrane Science, Vol. 376, pp:214–24.
- Gray, G.T., McCutcheon, J.R., Elimelech, M.,2006. Internal concentration polarization in forward osmosis: Role of membrane orientation. Desalination, Vol. 197, pp:1–8.
- Faghih Malek, R., Samimi, A., Shokrollahzadeh, S.,2015. »Internal concentration polarization in forward osmosis process for water desalination (a review)«. 15th Iranian National Congress Of Chemical Engineering (ICHEC),Tehran, Iran, https://www.civilica.com/Paper-ICHEC15-ICHEC15_007.html.
- Zhao, S., Zou, L.,2011. Relating solution physicochemical properties to internal concentration polarization in forward osmosis. Journal of Membrane Science, Vol. 379, pp:459–67.
- Klaysom, C., Cath, T.Y., Depuydt, T., Vankelecom, I.F.J.,2013. Forward and pressure retarded osmosis: Potential solutions for global challenges in energy and water supply. Chemical Society Reviews, Vol. 42, pp:6959-89.
- Lee, K.L., Baker, R.W., Lonsdale, H.K.,1981. Membranes for power generation by pressure-retarded osmosis. Journal of Membrane Science, Vol. 8(2), pp:141-71.
- Loeb, S., Titelman, L., Korngold, E., Freiman, J.,1997. Effect of porous support fabric on osmosis through a loeb–sourirajan type asymmetric membrane. Journal of Membrane Science, Vol. 129, pp:243–9.
- Yip, N.Y., Tiraferri, A., Phillip, W.A.,2010. Schiffman, J.D., Elimelech, M., High performance thin-film composite forward osmosis membrane. Environmental Science & Technology, Vol. 44(10), pp:3812-8.
- Phillip, W.A., Yong, J.S., Elimelech, M.,2010. Reverse draw solute permeation in forward osmosis: modeling and experiments. Environmental Science & Technology, Vol. 44(13), pp:5170-6.
- Tang, C.Y., She, Q., Lay, W.C.L., Wang, R., Fane, A.G.,2010. Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration. Journal of Membrane Science, Vol. 354(1–2), pp:123-33.
- Li, W., Gao, Y., Tang, C.Y.,2011. Network modeling for studying the effect of support structure on internal concentration polarization during forward osmosis: Model development and theoretical analysis with fem. Journal of Membrane Science, Vol. 379, pp:307–21.
- Sagiv, A., Semiat, R.,2011. Inite element analysis of forward osmosis process using NaCl solutions. Journal of Membrane Science, Vol. 379, pp:86–96.
- Mathias, F.G., Ulf, A., Claus, H.,2016. Open-source CFD model for optimization of forward osmosis and reverse osmosis membrane modules. Separation and Purification Technology, Vol. 158, pp:183–92.
- Pankaj, S., Sajikumar, N., Kaimal, R.,2016. Simulation of Forward Osmosis Using CFD. Procedia Technology, Vol. 24, pp:70-6.
- Jung, D.H., Lee, J., Kim, D.Y., Lee, Y.G., Park, M., Lee, S.,2011. Simulation of forward osmosis membrane process: Effect of membrane orientation and flow direction of feed and draw solutions. Desalination, Vol. 277, pp:83–91.
- Wei, J., Qiu, C., Tang, C.Y., Wang, R., Fane, A.G.,2011. Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes. Journal of Membrane Science, Vol. 372(1–2), pp:292-302.
- Ong, R.C., Chung, T.S., de Wit, J.S., Helmer, B.J.,2015. Novel cellulose ester substrates for high performance flat-sheet thin-film composite (TFC) forward osmosis (FO) membranes. Journal of Membrane Science, Vol. 473, pp:63-71.
- Han, G., Zhang, S., Li, X., Widjojo, N., Chung, T.S.,2012. Thin film composite forward osmosis membranes based on polydopamine modified polysulfone substrates with enhancements in both water flux and salt rejection. Chemical Engineering Science, Vol. 80, pp:219-31.
- Widjojo, N., Chung, T.S., Weber, M., Maletzko, C., Warzelhan, V.,2013. A sulfonated polyphenylenesulfone (sPPSU) as the supporting substrate in thin film composite (TFC) membranes with enhanced performance for forward osmosis (FO). Chemical Engineering Journal, Vol. 220, pp:15-23.
- Zhong, P., Fu, X., Chung, T.S,, Weber, M., Maletzko, C.,2013. Development of Thin-Film Composite forward Osmosis Hollow Fiber Membranes Using Direct Sulfonated Polyphenylenesulfone (sPPSU) as Membrane Substrates. Environmental Science & Technology, Vol. 47(13), pp:7430-6.
- Li, X., Wang, K.Y., Helmer, B., Chung, T.S.,2012. Thin-Film Composite Membranes and Formation Mechanism of Thin-Film Layers on Hydrophilic Cellulose Acetate Propionate Substrates for Forward Osmosis Processes. Industrial & Engineering Chemistry Research, Vol. 51(30), pp:10039-50.
- Qin, J.J., Chen, S,. Oo, M.H., Kekre, K.A., Cornelissen, E.R., Ruiken, C.J.,2010. Experimental studies and modeling on concentration polarization in forward osmosis. Water Science and Technology, Vol. 61(11), pp:2897-904.
- Deshmukh, A., Yip, N.Y., Lin, S., Elimelech, M.,2015. Desalination by forward osmosis: Identifying performance limiting parameters through module-scale modeling. Journal of Membrane Science., Vol. 491, pp:159-67.
_||_
- WWAP (World Water Assessment Programme),2012. The United Nations World Water Development Report 4: Managing Water under Uncertainty and Risk. Paris, UNESCO.
- Seckler, D., Amarasinghe, U., Molden, D., De Silva, R., Barker, R.,1998. World water demand and supply,1990 to 2025: Scenarios and issues. International Water Management Institute Research Report, 19.
- Amarasinghe, U.A., Smakhtin, V.,2014. Global water demand projections: Past, present and future. International Water Management Institute (IWMI) Research Report.156.
- McGinnis, R.L., Elimelech, M.,2007. Energy requirements of ammonia–carbon dioxide forward osmosis desalination. Desalination, Vol. 207(1–3), pp:370-82.
- Achilli, A., Cath, T.Y., Marchand, E.A., Childress, A.E.,2009. The forward osmosis membrane bioreactor: A low fouling alternative to mbr processes. Desalination, Vol, 239, pp:10–21.
- Mi, B., Elimelech, M.,2010. Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents. Journal of Membrane Science, Vol. 348(1–2), pp:337-45.
- Holloway, R.W., Cath, T.Y., Dennett, K.E., Childress, A.E.,2005. Forward osmosis for concentration of anaerobic digester centrate. Water research, Vol. 41(17), pp:4005-14.
- McCutcheon, J.R., Elimelech, M.,2006. Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis. Journal of Membrane Science. Vol. 284, pp:237–47.
- Akther, N., Sodiq, A., Giwa, A., Daer, S., Arafat, H.A., Hasan, S.W.,2015. Recent advancements in forward osmosis desalination: A review. Chemical Engineering Journal. Vol. 281, pp:502-22.
- Hoek, E.M.V., Guiver, M., Nikonenko, V., Tarabara, V.V., Zydney, A.L.,2013. Membrane terminology, encyclopedia. Membrane Science Technology, PP:2219–28.
- Cath, T.Y., Childress, A.E., Elimelech, M.,2006. Forward osmosis: Principles, applications, and recent developments. Journal of Membrane Science, Vol. 281(1–2), pp:70-87.
- Zhao, S., Zou, L., Tang, C.Y., Mulcahy, D.,2012. Recent developments in forward osmosis: Opportunities and challenges. Journal of Membrane Science, Vol. 396, pp:1-21.
- Seppala, A., Lampinen, M.J.,2004. On the non-linearity of osmotic flow. Experimental Thermal and Fluid Science, Vol. 28, pp:283–96.
- McCutcheon, J.R., McGinnis, R.L., Elimelech, M.,2006. Desalination by ammonia–carbon dioxide forward osmosis: Influence of draw and feed solution concentrations on process performance. Journal of Membrane Science, Vol. 278(1–2), pp:114-23.
- Kim, J., Jeong, K., Jun Park M., Ho, K.S., Joon, H.K.,2015. Recent advances in osmotic energy generation via pressure-retarded osmosis (pro): A review. Energies, Vol. 8, pp:11821-45.
- Qasim, M., Darwish, N.A., Sarp, S., Hilal, N., 2015. Water desalination by forward (direct) osmosis phenomenon: A comprehensive review. Desalination, Vol. 374, pp:47-69.
- Elimelech, M., Bhattacharjee, S.,1998. A novel approach for modeling concentration polarization in crossflow membrane filtration based on the equivalence of osmotic pressure model and filtration theory. Journal of Membrane Science, Vol. 145, pp:223–41.
- Sablani, S.S., Goosen, M.F.A., Al-Belushi, R., Wilf, M.,2001. Concentration polarization in ultrafiltration and reverse osmosis: A critical review. Desalination, Vol. 141, pp:269–89.
- Gruber, M.F., Johnson, C.J., Tang, C.Y., Jensen, M.H., Yde, L., Helix-Nielsen, C.,2011. Computational fluid dynamics simulations of flow and concentration polarization in forward osmosis membrane systems. Journal of Membrane Science, Vol. 379(1–2), pp:488-95.
- Nematzadeh, M., Samimi, A., Shokrollahzadeh, S.,2016. Application of sodium bicarbonate as draw solution in forward osmosis desalination: influence of temperature and linear flow velocity. Desalination and Water Treatment, Vol. 57, pp:20784-91.
- Song, L., Elimelech, M.,1995. Theory of concentration polarization in crossflow filtration. Journal of Chemical Society Faraday Trans, Vol. 91, pp:3389–98.
- McCutcheon, J.R., Elimelech, M.,2007. Modeling water flux in forward osmosis: Implications for improved membrane design. AIChE Journal, Vol. 53, pp:1736–44.
- Mulder, M.,1996. Basic principles of membrane technology: Springer Science & Business Media;
- Su, J., Chung, T.S.,2011. Sublayer structure and reflection coefficient and their effects on concentration polarization and membrane performance in fo processes. Journal of Membrane Science, Vol. 376, pp:214–24.
- Gray, G.T., McCutcheon, J.R., Elimelech, M.,2006. Internal concentration polarization in forward osmosis: Role of membrane orientation. Desalination, Vol. 197, pp:1–8.
- Faghih Malek, R., Samimi, A., Shokrollahzadeh, S.,2015. »Internal concentration polarization in forward osmosis process for water desalination (a review)«. 15th Iranian National Congress Of Chemical Engineering (ICHEC),Tehran, Iran, https://www.civilica.com/Paper-ICHEC15-ICHEC15_007.html.
- Zhao, S., Zou, L.,2011. Relating solution physicochemical properties to internal concentration polarization in forward osmosis. Journal of Membrane Science, Vol. 379, pp:459–67.
- Klaysom, C., Cath, T.Y., Depuydt, T., Vankelecom, I.F.J.,2013. Forward and pressure retarded osmosis: Potential solutions for global challenges in energy and water supply. Chemical Society Reviews, Vol. 42, pp:6959-89.
- Lee, K.L., Baker, R.W., Lonsdale, H.K.,1981. Membranes for power generation by pressure-retarded osmosis. Journal of Membrane Science, Vol. 8(2), pp:141-71.
- Loeb, S., Titelman, L., Korngold, E., Freiman, J.,1997. Effect of porous support fabric on osmosis through a loeb–sourirajan type asymmetric membrane. Journal of Membrane Science, Vol. 129, pp:243–9.
- Yip, N.Y., Tiraferri, A., Phillip, W.A.,2010. Schiffman, J.D., Elimelech, M., High performance thin-film composite forward osmosis membrane. Environmental Science & Technology, Vol. 44(10), pp:3812-8.
- Phillip, W.A., Yong, J.S., Elimelech, M.,2010. Reverse draw solute permeation in forward osmosis: modeling and experiments. Environmental Science & Technology, Vol. 44(13), pp:5170-6.
- Tang, C.Y., She, Q., Lay, W.C.L., Wang, R., Fane, A.G.,2010. Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration. Journal of Membrane Science, Vol. 354(1–2), pp:123-33.
- Li, W., Gao, Y., Tang, C.Y.,2011. Network modeling for studying the effect of support structure on internal concentration polarization during forward osmosis: Model development and theoretical analysis with fem. Journal of Membrane Science, Vol. 379, pp:307–21.
- Sagiv, A., Semiat, R.,2011. Inite element analysis of forward osmosis process using NaCl solutions. Journal of Membrane Science, Vol. 379, pp:86–96.
- Mathias, F.G., Ulf, A., Claus, H.,2016. Open-source CFD model for optimization of forward osmosis and reverse osmosis membrane modules. Separation and Purification Technology, Vol. 158, pp:183–92.
- Pankaj, S., Sajikumar, N., Kaimal, R.,2016. Simulation of Forward Osmosis Using CFD. Procedia Technology, Vol. 24, pp:70-6.
- Jung, D.H., Lee, J., Kim, D.Y., Lee, Y.G., Park, M., Lee, S.,2011. Simulation of forward osmosis membrane process: Effect of membrane orientation and flow direction of feed and draw solutions. Desalination, Vol. 277, pp:83–91.
- Wei, J., Qiu, C., Tang, C.Y., Wang, R., Fane, A.G.,2011. Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes. Journal of Membrane Science, Vol. 372(1–2), pp:292-302.
- Ong, R.C., Chung, T.S., de Wit, J.S., Helmer, B.J.,2015. Novel cellulose ester substrates for high performance flat-sheet thin-film composite (TFC) forward osmosis (FO) membranes. Journal of Membrane Science, Vol. 473, pp:63-71.
- Han, G., Zhang, S., Li, X., Widjojo, N., Chung, T.S.,2012. Thin film composite forward osmosis membranes based on polydopamine modified polysulfone substrates with enhancements in both water flux and salt rejection. Chemical Engineering Science, Vol. 80, pp:219-31.
- Widjojo, N., Chung, T.S., Weber, M., Maletzko, C., Warzelhan, V.,2013. A sulfonated polyphenylenesulfone (sPPSU) as the supporting substrate in thin film composite (TFC) membranes with enhanced performance for forward osmosis (FO). Chemical Engineering Journal, Vol. 220, pp:15-23.
- Zhong, P., Fu, X., Chung, T.S,, Weber, M., Maletzko, C.,2013. Development of Thin-Film Composite forward Osmosis Hollow Fiber Membranes Using Direct Sulfonated Polyphenylenesulfone (sPPSU) as Membrane Substrates. Environmental Science & Technology, Vol. 47(13), pp:7430-6.
- Li, X., Wang, K.Y., Helmer, B., Chung, T.S.,2012. Thin-Film Composite Membranes and Formation Mechanism of Thin-Film Layers on Hydrophilic Cellulose Acetate Propionate Substrates for Forward Osmosis Processes. Industrial & Engineering Chemistry Research, Vol. 51(30), pp:10039-50.
- Qin, J.J., Chen, S,. Oo, M.H., Kekre, K.A., Cornelissen, E.R., Ruiken, C.J.,2010. Experimental studies and modeling on concentration polarization in forward osmosis. Water Science and Technology, Vol. 61(11), pp:2897-904.
- Deshmukh, A., Yip, N.Y., Lin, S., Elimelech, M.,2015. Desalination by forward osmosis: Identifying performance limiting parameters through module-scale modeling. Journal of Membrane Science., Vol. 491, pp:159-67.