بهینهسازی فرایند Soil washing در حضور ترکیبات Tween 80 و EDTA در حذف آلایندههای PAHs و کادمیوم از خاکهای آلوده با روش BBD
الموضوعات :مطهره هراتی 1 , روشنک رضایی کلانتری 2
1 - دانشجوی دکترای تخصصی مهندسی بهداشت محیط، دانشگاه ایران، تهران، ایران.
2 - استاد تمام دانشکده بهداشت دانشگاه علوم پزشکی ایران، تهران، ایران. *(مسوول مکاتبات)
الکلمات المفتاحية: کادمیوم, فرایند شستشویخاک, EDTA, فنانترن, Tween 80,
ملخص المقالة :
زمینه و هدف: آلودگی ناشی از ترکیبات نفتی (PAHs) و فلزات سنگین به دلیل خاصیت تجمعی و سمیت بالا، باعث مشکلات عمده زیست محیطی می شود. این ترکیبات با آن که در هوا و آب ردیابی شده اند، اما خاک پذیرنده نهایی و اصلی به شمار می رود. شستشوى خاک با استفاده از سورفکتانت ها یک فن آورى فیزیکوشیمیایی با کارایی بالا جهت خروج فنانترن و کادمیوم از محیط خاکی و انتقال آن ها به فاز آبى می باشد. روش بررسی: در این مطالعه که در سال 1396 انجام شده است، کارایی فرایند با روش طراحی باکس بنکن به همراه روش پاسخ سطح برای طراحی آزمایش و بهینه سازی پارامترهایی چون غلظت سورفکتانت در محدوده mg/L 1000، 1500 و 2000، زمان شستشو برابر 2، 12 و 24 ساعت با نسبت حجم محلول سورفاکتانت به خاک (ml/g) (v/w) 10، 20 و 30 بررسی شد. به نمونه های خاک آلوده با غلظت های بالایی از فنانترن (mg/kg 500) و کادمیوم (mg/kg 80)، سورفکتانت Tween 80 و EDTA اضافه شد. غلظت نهایی فنانترن و کادمیوم توسط دستگاه HPLC و دستگاه طیف سنج جذب اتمی (ASS) سنجش شد. یافته ها: نتایج نشان داد کارایی فرایند در شرایط بهینه برای جداسازی 76% فنانترن و 81% کادمیوم در غلظت های جداگانه Tween 80 و EDTA به مقدار mg/L 2000 ، نسبت محلول سورفکتانت به خاک L/S (v/w) 30، زمان شستشو 2 ساعت به دست آمد. غلظت سورفکتانت (0001/0P<) تاثیرگزارترین متغیر است. بحث و نتیجه گیری: جداسازی فنانترن و کادمیوم از خاک از طریق فرایند شستشوی خاک به کمک سورفکتانت، روشی موثر در پاک سازی خاک های آلوده می باشد.
- Abdel-Shafy HI., Mansour MSM., et al, 2016, "A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation", Egyptian Journal of Petroleum, 25(1),107–23.
- Aryal M., Kyriakides M., 2013, "Biodegradation and Kinetics of Phenanthrene and Pyrene in the Presence of Nonionic Surfactants by Arthrobacter Strain Sphe3", Water, Air, & Soil Pollution, 224(8), 1-10.
- Bautista LF., Morales G., Sanz R, 2015, "Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by laccase from Trametes versicolor covalently immobilized on amino-functionalized SBA-15", Chemosphere, 136, 273–80.
- Bourceret A., Cébron A., Tisserant E., et al, 2016, "The Bacterial and Fungal Diversity of an Aged PAH- and Heavy Metal-Contaminated Soil is Affected by Plant Cover and Edaphic Parameters", Microbial Ecology. 71(3), 711-724.
- Chen M., Xu P., Zeng G., et al, 2015, "Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs", Biotechnol Advance, 33(6), 745-755.
- Cheng M., Zeng G., Huang D., Lai C., et al, 2016, "Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review", Chemical Engineering Journal, 284(4), 582-598.
- Diaz M., Mora V., Pedrozo F., Nichela D., Baffico G, 2014, "Evaluation of native acidophilic algae species as potential indicators of polycyclic aromatic hydrocarbon (PAH) soil contamination", Journal of Applied Phycology, 27(1), 321–5.
- Jin H., Zhou W., Zhu L, 2013, "Utilizing surfactants to control the sorption, desorption, and biodegradation of phenanthrene in soil-water system", Journal of Environmental Sciences (China), 25(7), 1355–61.
- Kuppusamy S., Thavamani P., Megharaj M., Venkateswarlu K., Lee YB., Naidu R, 2016, "Pyrosequencing analysis of bacterial diversity in soils contaminated long-term with PAHs and heavy metals: Implications to bioremediation", Journal of Hazardous Materials, 317(4),169-179.
- Khalladia R., Benhabilesa O., Bentahara F., Moulai-Mostefa N., 2009. Surfactant remediation of diesel fuel polluted soil, Journal of Hazardous Materials, 164 (9) 1179-1184.
- Lau EV., Gan S., Ng H.K., Poh P.E, 2014, "Extraction agents for the removal of polycyclic aromatic hydrocarbons (PAHs) from soil in soil washing technologies", Environmental Pollution, 184(7), 640-649.
- Liu S-H., Zeng G-M., Niu Q-U., Liu Y., et al, 2017, "Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review", Bioresource Technology, 224(1), 25-33.
- Peng S., Wu W., Chen. J, 2011, "Removal of PAHs with surfactant-enhanced soil washing: Influencing factors and removal effectiveness", Chemosphere, 82(6), 1173-1177.
- Race M., Marotta R., Fabbricino M., et al, 2016, "Copper and zinc removal from contaminated soils through soil washing process using ethylene-diamine-disuccinic acid as a chelating agent: A modeling investigation", Journal of Environmental Chemical Engineering, 4(3), 2878-2891.
- Rodriguez J., García A., Poznyak T., Chairez I, 2017, "Phenanthrene degradation in soil by ozonation: Effect of morphological and physicochemical properties", Chemosphere, 169(1), 53-61.
- Sayara T., Sarrà M., Sánchez A, 2010, "Optimization and Enhancement of Soil Bioremediation by Composting Using the Experimental Design Technique", Biodegradation, 21(3), 345-356.
- Shiau B.J.B., Brammer J.M., Sabatini D.A., Harwell J.H., Knox R.C, 2003. Recent Development of Low Concentration Surfactant Flushing for NAPL-Impacted Site Remediation and Pollution Prevention, Petroleum Hydrocarbons and Organic Chemicals in Ground Water/Prevention, Assessment, and Remediation Twentieth Annual Conference and Exposition, Costa Mesa, CA.
- Svab M., Kubal M., Müllerova M., Raschman R., 2009. Soil flushing by surfactant solution: Pilot-scale demonstration of complete technology, J. Hazard. Mater., 163 (2) 410-417.
- Strbak L., 2000. In Situ Flushing with Surfactants and Cosolvents, U.S. Environmental Protection Agency, Washington, DC, report.
- Trellu C., Ganzenko O., Papirio S., Pechaud Y., Oturan N., et al, 2016, "Combination of anodic oxidation and biological treatment for the removal of phenanthrene and Tween 80 from soil washing solution", Chemical Engineering Journal, 306(8), 588-596.
- USEPA 1996, "Ultrasonic extraction. Center for environmental research information".
- U.S. Environmental Protection Agency, Cost and Performance Report for LNAPL Characterization and Remediation, 2005, report.
- Wu Q., Geng X, 2015, "Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: Implications for dissemination of heavy metals", Science of the Total Environment, 506-507(9), 217-225.
- Voglar D., Lestan D, 2013, "Pilot-scale washing of Pb, Zn and Cd contaminated soil using EDTA and process water recycling", Chemosphere, 306(5), 76-82.
- Zhao G., Wang H., Liu G, 2016, "Electrochemical Determination of Trace Cadmium in Soil by a Bismuth Film/Graphene-β-cyclodextrin-Nafion Composite Modified Electrode", International Journal of Electrochemical Science, 11(7), 1840-1851.
_||_
- Abdel-Shafy HI., Mansour MSM., et al, 2016, "A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation", Egyptian Journal of Petroleum, 25(1),107–23.
- Aryal M., Kyriakides M., 2013, "Biodegradation and Kinetics of Phenanthrene and Pyrene in the Presence of Nonionic Surfactants by Arthrobacter Strain Sphe3", Water, Air, & Soil Pollution, 224(8), 1-10.
- Bautista LF., Morales G., Sanz R, 2015, "Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by laccase from Trametes versicolor covalently immobilized on amino-functionalized SBA-15", Chemosphere, 136, 273–80.
- Bourceret A., Cébron A., Tisserant E., et al, 2016, "The Bacterial and Fungal Diversity of an Aged PAH- and Heavy Metal-Contaminated Soil is Affected by Plant Cover and Edaphic Parameters", Microbial Ecology. 71(3), 711-724.
- Chen M., Xu P., Zeng G., et al, 2015, "Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs", Biotechnol Advance, 33(6), 745-755.
- Cheng M., Zeng G., Huang D., Lai C., et al, 2016, "Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review", Chemical Engineering Journal, 284(4), 582-598.
- Diaz M., Mora V., Pedrozo F., Nichela D., Baffico G, 2014, "Evaluation of native acidophilic algae species as potential indicators of polycyclic aromatic hydrocarbon (PAH) soil contamination", Journal of Applied Phycology, 27(1), 321–5.
- Jin H., Zhou W., Zhu L, 2013, "Utilizing surfactants to control the sorption, desorption, and biodegradation of phenanthrene in soil-water system", Journal of Environmental Sciences (China), 25(7), 1355–61.
- Kuppusamy S., Thavamani P., Megharaj M., Venkateswarlu K., Lee YB., Naidu R, 2016, "Pyrosequencing analysis of bacterial diversity in soils contaminated long-term with PAHs and heavy metals: Implications to bioremediation", Journal of Hazardous Materials, 317(4),169-179.
- Khalladia R., Benhabilesa O., Bentahara F., Moulai-Mostefa N., 2009. Surfactant remediation of diesel fuel polluted soil, Journal of Hazardous Materials, 164 (9) 1179-1184.
- Lau EV., Gan S., Ng H.K., Poh P.E, 2014, "Extraction agents for the removal of polycyclic aromatic hydrocarbons (PAHs) from soil in soil washing technologies", Environmental Pollution, 184(7), 640-649.
- Liu S-H., Zeng G-M., Niu Q-U., Liu Y., et al, 2017, "Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review", Bioresource Technology, 224(1), 25-33.
- Peng S., Wu W., Chen. J, 2011, "Removal of PAHs with surfactant-enhanced soil washing: Influencing factors and removal effectiveness", Chemosphere, 82(6), 1173-1177.
- Race M., Marotta R., Fabbricino M., et al, 2016, "Copper and zinc removal from contaminated soils through soil washing process using ethylene-diamine-disuccinic acid as a chelating agent: A modeling investigation", Journal of Environmental Chemical Engineering, 4(3), 2878-2891.
- Rodriguez J., García A., Poznyak T., Chairez I, 2017, "Phenanthrene degradation in soil by ozonation: Effect of morphological and physicochemical properties", Chemosphere, 169(1), 53-61.
- Sayara T., Sarrà M., Sánchez A, 2010, "Optimization and Enhancement of Soil Bioremediation by Composting Using the Experimental Design Technique", Biodegradation, 21(3), 345-356.
- Shiau B.J.B., Brammer J.M., Sabatini D.A., Harwell J.H., Knox R.C, 2003. Recent Development of Low Concentration Surfactant Flushing for NAPL-Impacted Site Remediation and Pollution Prevention, Petroleum Hydrocarbons and Organic Chemicals in Ground Water/Prevention, Assessment, and Remediation Twentieth Annual Conference and Exposition, Costa Mesa, CA.
- Svab M., Kubal M., Müllerova M., Raschman R., 2009. Soil flushing by surfactant solution: Pilot-scale demonstration of complete technology, J. Hazard. Mater., 163 (2) 410-417.
- Strbak L., 2000. In Situ Flushing with Surfactants and Cosolvents, U.S. Environmental Protection Agency, Washington, DC, report.
- Trellu C., Ganzenko O., Papirio S., Pechaud Y., Oturan N., et al, 2016, "Combination of anodic oxidation and biological treatment for the removal of phenanthrene and Tween 80 from soil washing solution", Chemical Engineering Journal, 306(8), 588-596.
- USEPA 1996, "Ultrasonic extraction. Center for environmental research information".
- U.S. Environmental Protection Agency, Cost and Performance Report for LNAPL Characterization and Remediation, 2005, report.
- Wu Q., Geng X, 2015, "Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: Implications for dissemination of heavy metals", Science of the Total Environment, 506-507(9), 217-225.
- Voglar D., Lestan D, 2013, "Pilot-scale washing of Pb, Zn and Cd contaminated soil using EDTA and process water recycling", Chemosphere, 306(5), 76-82.
- Zhao G., Wang H., Liu G, 2016, "Electrochemical Determination of Trace Cadmium in Soil by a Bismuth Film/Graphene-β-cyclodextrin-Nafion Composite Modified Electrode", International Journal of Electrochemical Science, 11(7), 1840-1851.