آمایش سرزمین و مدیریت منابع آب؛ آمایش منابع بهجای آمایش فعالیتها (مطالعه موردی: حوضه آبریز خزر)
الموضوعات :
امیر هدایتی آقمشهدی
1
,
حمیدرضا جعفری
2
,
ناصر مهردادی
3
,
هدایت فهمی
4
,
پروین فرشچی
5
,
سمانه زاهدی
6
1 - دانشجوی دکتری برنامهریزی محیطزیست، دانشکده محیطزیست، دانشگاه تهران *(مسوول مکاتبات) .
2 - استاد گروه برنامهریزی و مدیریت محیطزیست دانشکده محیطزیست دانشگاه تهران.
3 - استاد گروه مهندسی محیطزیست دانشکده محیطزیست دانشگاه تهران.
4 - دکتری منابع آب هیدرولوژی، معاون دفتر برنامهریزی کلان آب و آبفا وزارت نیرو.
5 - استادیار گروه مهندسی سواحل دانشکده محیطزیست و انرژی دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران.
6 - دانشجوی دکتری مدیریت محیطزیست دانشکده محیطزیست و انرژی دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران.
تاريخ الإرسال : 26 الأربعاء , جمادى الثانية, 1436
تاريخ التأكيد : 08 الجمعة , شوال, 1436
تاريخ الإصدار : 10 الأربعاء , ذو الحجة, 1436
الکلمات المفتاحية:
آمایش سرزمین,
تغییرات پوشش زمین,
مدیریت منابع آب,
حوضه خزر,
ملخص المقالة :
زمینه و هدف: حوضه آبریز خزر یکی از شش حوضه اصلی کشور است که بهدلیل رشد و توسعه فعالیتهای انسانی طی دهههای گذشته ناشی از توسعه برنامههای آمایش سرزمین موجب تغییرات شدید پوشش زمین در این حوضه شده است که این موضوع خود موجب ایجاد تاثیرات نامطلوبی بر روی منابع آب در این حوضه شده است.
روش بررسی: در این مقاله برای بررسی تاثیر آمایش سرزمین بر روی منابع آب در قالب تغییرات پوشش زمین، ابتدا به بررسی تغییرات پوشش زمین در زیر حوضههای خزری میپردازیم و در مرحله بعد عوامل فشار بر منابع آب توسط روش FANP امتیازدهی، در نرم افزار IDRISI نقشهسازی و در نرم Arc GIS رویهم اندازی شده و وضعیت مدیریت منابع آب در هر زیر حوضه خزری مشخص میشود. در نهایت و توسط نرم افزار Excel رگرسیون و ارتباط بین تغییرات پوشش زمین ناشی از آمایش سرزمین و مدیریت منابع آب در حوضه خزر مشخص خواهد شد.
یافتهها: نتایج نشان میدهد که در فاصله بین سالهای 2001 تا 2012، زیرحوضه تالش با 91/28 درصد بیشترین و زیرحوضه سفیدرود با 18/8 درصد کمترین میزان تغییرات را در بین زیرحوضههای خزری داشتند. همچنین امتیازدهی نهایی مدیریت منابع آب در زیرحوضههای خزری نشان میدهد که زیرحوضه ارس با 499617/0 امتیاز بیشترین و زیرحوضه هراز قرهسو با 158627/0 امتیاز کمترین امتیاز را به خود اختصاص داده است. از طرفی نتایج تعیین وابستگی تغییرات پوشش زمین ناشی از آمایش سرزمین و مدیریت منابع آب در زیرحوضههای خزری مشخص میکند که R-Squerd این وابستگی برابر با 645/0 میباشد که نشان از وابستگی نسبتا بالایی در این زمینه است.
المصادر:
Renetzeder, C., Schindler, S., Peterseil, J., et al., 2010. Can we measure ecological sustainability landscape pattern as an indicator for naturalness and land use intensity at regional, national and European level. Ecological Indicator, Vol. 10, pp. 39–48.
Broadbent, E.N., Almeyda Zambrano, A.M., Dirzo, R., Durham,W.H., Driscoll, L., Gallagher, P., Salters, R., Schultz, J., Colmenares, A., Randolph, S.G., 2012. The effect of land use change and ecotourism on biodiversity: a case study of Manuel Antonio, Costa Rica, from 1985 to 2008. Landscape Ecology, Vol. 27, pp. 731–744.
سازمان برنامه و بودجه، 1361، مفاهیم اقتصادی برنامهریزی. معاونت برنامهریزی و ارزشیابی سازمان برنامه و بودجه، صفحه 35.
مخدوم. م، 1374، شالوده آمایش سرزمین، جلد پنجم، تهران، انتشارات دانشگاه تهران، صفحه 15.
صالحی. ال و پوراصغر سنگاچین. ف، 1388، تحلیلی بر موانع فراروی آمایش سرزمین در ایران، مجله راهبرد، سال 2، شماره 52، صص 149 تا 182.
United Nations., 2008. Spatial Planning Key Instrument for Development and Effective Governance with Spatial Reference to Countries in Transition, (U.N, New York).
FAO., 1993. Guidelines for Land Use Planning. Development Series 1, (F.A.O, Rome).
Dimyati, M., Mizuno, K., Kitamura, T., 1996. An analysis of land use/cover change using the combination of MSS Landsat and land use map: a case study in Yogyakarta, Indonesia. International Journal of Remote Sensing, Vol. 17, pp. 931–944.
Kumar, M., Rawat, J, S., 2015. Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. The Egyptian Journal of Remote Sensing and Space Sciences,Vol. 23, pp. 144-156.
Ludwig, F., van Slobbe, E., Cofino, W., 2014. Climate change adaptation and Integrated Water Resource Management in the water sector. Journal of Hydrology, Vol. 518, pp. 235–242.
Molinos-Senante, M., Herndez-Sancho, F., Mochol-Arce, M., Sala-Garrido, R., 2014. A management and optimisation model for water supply planning in water deficit areas. Journal of Hydrol, Vol. 515, pp. 139–146.
Meire, P., Coenen, M., Lombardo, C., Robba, M., Sacile, R., 2008. Towards integrated water management. In: Meire, P., Coenen, M., Lombardo, C., Robba, M., Sacile, R. (Eds.), Integrated Water Management, (N.A.T.O, Science Series. IV. Earth and Environmental Sciences, Vol. 80. Springer, Netherlands).
Porto, M.F.A., Porto, R.L., 2008. Gestao de bacias hidrograficas. Estudos Avancados, Vol. 63, 43–60.
Xie, M., 2006. Integrated water resources management (IWRM) – introduction to principles and practices. In: Africa Regional Workshop on (I.W.R.M, Nairobi).
Tong, S., Chen, W., 2002. Modeling the relationship between land use and surface water quality. Journal of Environmental Management, Vol. 66, pp. 377-393.
Ahearn, D. S., Sheibley, R.W., Dahlgren, R. A., Anderson, M., Jonshon, J., Kenneth, W. T., 2005. Land use and land cover influence on water quality in the last free-flowing river draining the western Sierra Nevada, California. Journal of Hydrology, Vol. 313, pp. 234-247.
Jiang, Q.O., Deng, X., Zhan, J., He, S., 2011. Estimation of land production and its response to cultivated land conversion in North China Plain. Chinease Geographcal Sciense, Vol. 21, pp. 685–694.
Liu, J., Deng, X., 2011. Influence of different land use on urban microenvironment in Beijing City. China Journal of Food and Agricator and Environment, Vol. 9, pp. 1005–1011.
Deng, X., Han, J., Yin, F., 2012. Net energy, CO2 emission and land-based cost-benefit analyses of jatropha biodiesel: a case study of the Panzhihua Region of Sichuan Province in China, Energies Vol . 5, pp. 2150–2164.
Huang, J., Zhan, J., Yan, H., Wu, F., Deng, X., 2013. Evaluation of the impacts of land use on water quality: a case study in the Chaohu Lake Basin. The Scientific World Journal, Vol. 13, pp. 586-598.
Gyawali, S., Techto, K., Monprapussorn, S., Yuangyai, C., 2013. Integrating Land Use and Water Quality for Environmental Based Land Planning fir U-tapao River Basin Thailand. Procedia - Social and Behavioral Sciences, Vol. 91, pp. 556 – 563.
Fidelis, T., Roebeling, P., 2014. Water resources and land use planning systems in Portugal Exploring better synergies through Ria de Aveiro. Land Use Policy, Vol. 39, pp. 84–95.
Iza, A., Stein, R., 2009. RULE – Reforming water governance, (I.U.C.N, Gland, Switzerland).
Liefferink, D., Wiering, M., Uitenboogaart, Y., 2011. The EU Water Framework Direc-tive: a multi-dimensional analysis of implementation domestic impact. Land Use Policy, Vol. 28, pp. 712–722.
OECD., 2011. Water Governance in OECD Countries: A Multi-level Approach. OECD Studies on Water, (O.E.C.D, Publishing, Paris).
UNEP., 2012-1. The UN-Water Status Report on The Application of Integrated Approaches to Water Resources Management, (U.N.E.P, Programme).
Safavi, H.R., Golmohammadi, M.H., Sandoval-Solis, S., 2015. Expert knowledge based modeling for integrated water resources planning and management in the Zayandehrud River Basin. Journal of Hydrology, Vol. 528, pp. 773–789.
Letcher, R.A., Croke, B.F.W., Jakeman, A.J., Merritt, W.S., 2006a. An integrated modeling toolbox for water resources assessment and management in highland catchments: model description. Agricaltor Systems, Vol. 4, pp. 106–131.
Letcher, R.A., Croke, B.F.W., Merritt, W.S., Jakeman, A.J., 2006b. An integrated modeling toolbox for water resources assessment and management in highland catchments: sensitivity analysis and testing. Agricator Systems, Vol. 5, pp. 132–164.
Weng, S.Q., Huang, G.H., Li, Y.P., 2010. An integrated scenario-based multi-criteria decision support system for water resources management and planning – a case study in the Haihe River Basin. Expert System with Applications, Vol. 12, pp. 8242–8254.
Geiser, T., Printz, A., von Raumer, H.G., Gِtzinger, J., Dukhovny, V.A., Barthel, R., Stahr, K., 2008. Development of a regional model for integrated management of water resources at the basin scale. Physics and Chemistery of Earth part A/B/C, Vol. 33, pp. 175–182.
Davies, E.G., Simonovic, S.P., 2011. Global water resources modeling with an integrated model of the social–economic–environmental system. Advances in Water Resource, Vol.34, pp. 684–700.
پرورش. ح، نوحهگر. الف و پرورش. الف، 1388، مدیریت جامع حوزه آبخیز، پیوند مردم با آب و اراضی خود، ترجمه گریگسن. ه، پیتر. ف و کنت. ب، جلد اول، بندرعباس، انتشارات دانشگاه هرمزگان، صفحه 45.
پرورش. ح، دهقانی. م و نوحهگر. الف، 1389، مقایسه روش آمایش فیزیکی-ژئومرفولوژی- و روش آمایش سرزمین جهت ارزیابی توان اکولوژیکی حوزه آبخیز نساء در هرمزگان، آمایش سرزمین، سال 2، شماره 8، صص 27 تا 50.
UNEP., 2012-2. GEO5, Global Environment Outlook, Environment for the future we want. (U.N.E.P, Programme).
NASA., 2014. MODIS Brochoures. (N.S.A, California).
Deng, H., 1999. Multicriteria analysis with fuzzy pairwise comparisons. International Journal of Approximate Reasoning, Vol. 21, pp. 215-231.
Boroushaki, S., Malczewski, J., 2008. Implementing an extension of the analytical hierarchy process using ordered weighted averaging operators with fuzzy quantifiers in ArcGIS. Computers & Geosciences, Vol. 34, pp. 399-410.
Linkov, I., Satterstrom, F.K., Steevens, J., Ferguson, E., Pleus, R. C., 2007. Multi-criteria decision analysis and environmental risk assessment for nanomaterials. Journal of Nanoparticle Research, Vol. 9, pp. 543–554.
عالم تبریز. آ و باقرزاده. آ، 1388، تلفیق ANP و TOPSIS تعدیل شده برای گزینش تامین کننده راهبردی، پژوهشهای مدیریت، سال 2، شماره 8، صص 149 تا 188.
قدسیپور. س. ح، 1389، فرایند تحلیل سلسله مراتبی (AHP)، جلد هشتم، تهران، انتشارات دانشگاه صنعتی امیرکبیر، صفحه 68.
رزمی. ج، صادق عمل نیک. م و هاشمی. م، 1387، انتخاب تامین کننده با استفاده از روش فرآیند تحلیل شبکهای فازی، نشریه دانشکده فنی (دانشگاه تهران)، سال 7، شماره23، صص 935 تا 946.
Leung, L.C & Cao, D., 2000. On consistency and ranking of alternatives in fuzzy AHP. European Journal of Operational Research, Vol. 124, pp. 88-96.
Hansen, H.S., 2005. GIS-based multi-criteria analysis of wind farm development. ScanGIS 2005: Scandinavian Research Conference on Geographical Information Science. Stockholm, Swoden, (pp. 75-87).
Lee, S., 2007. Application and verification of fuzzy algebraic operators to landslide susceptibility mapping. Environmental Geology, Vol (52), pp. 615-623.
Kabir, S., Edifor, E., Walker, M., Gordon, N., 2014. Quantification of Temporal Fault Trees Based on Fuzzy Set Theory. Proceedings of the Ninth International Conference on Dependability and Complex Systems DepCoS-RELCOMEX. Brunow, Poland (pp. 255-264).
Ghosh, J. K., Bhattacharya, D., Sharma, S. K., 2012. Fuzzy Knowledge Based GIS for Zonation of Landslide Susceptibility. Applications of Chaos and Nonlinear Dynamics in Science and Engineering, Vol. 2, pp. 21-37.
Dombi, J., 1990. Membership function as an evaluation. Fuzzy sets and systems. Vol. 35, pp. 1-21.
Onut, S., Kara, S.S., Isik, E., 2009. Long Term Selection Using a Combined Fuzzy MCDM Approach: A Case Study for a Telecommunication Company. Expert Systems with Applications, Vol. 36, pp. 3887-3895.
Gogus, O., Boucher, T.O., 1998. Strong Transitivity, Rationality and Weak Monotonicity in Fuzzy Pairwise Comparisons. Fuzzy Sets and Systems, Vol. 94, pp. 133-144.
Lin, H., Kao, j., Li, k., 1996. Fuzzy GIS assisted landfill siting analysis. proceeding of international conference on Solid Waste Technology and Management, Tokyo, Japan, pp. 322_324.
Valizadeh, K., Shababi, H., 2009. Necessities of GIS usage in urban water management at the time of Natural accidents, case study: Saqqez city. 4 International Conference on Geographic, Paris, France, pp. 89-98.
وزارت نیرو، 1392، مطالعات بههنگامسازی طرح جامع آب کشور در حوضههای ارس، ارومیه، تالش - تالاب انزلی، سفیدرود بزرگ، سفیدرود - هراز، هراز - قرهسو، گرگانرود و اترک، جلدهای 28، 29 و 30. 1، تهران، وزارت نیرو معاونت آب و آبفا، دفتر برنامهریزی کلان آب و آبفا.
مرکز آمار ایران، سرشماری عمومی نفوس و مسکن، 1390. http://www.amar.org.ir/Portals/0/sarshomari90/n_sarshomari90_2.pdf