Optimal Feedback Control of Fractional Semilinear Integro-differential Equations in The Banach Spaces
الموضوعات : مجله بین المللی ریاضیات صنعتیS. Valizadeh 1 , A. Borhanifar 2 , M. R. Abdollahpour 3
1 - Department of Mathematics and Applications, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.
2 - Department of Mathematics and Applications, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.
3 - Department of Mathematics and Applications, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.
الکلمات المفتاحية: Mild solutions, Feasible pairs, Optimal feedback control, Fractional integro-differential equations,
ملخص المقالة :
Recently, there has been significant development in the existence of mild solutions for fractional semilinear integro-differential equations but optimal control is not provided. The aim of this paper is studying optimal feedback control for fractional semilinear integro-differential equations in an arbitrary Banach space associated with operators generating compact semigroup on the Banach space.
[1] J. P. Carvalho, C. Cuevas, Optimal feedback control for semilinear fractional evolution equations in Banach spaces, Applied Mathematics Letters 23 (2010) 960-965.
[2] C. Cattani, H. M. Srivastava, X. J. Yang, Fractional dynamics, Sciendo Migration, (2015).
[3] Y. K. Chang, V. Kavitha, M. M. Arjunan, Existence and uniqueness of mild solutions to a semilinear integro differential equation of fractional order, Nonlinear Analysis 71 (2009) 5551-5559.
[4] M. M. El-Borai, Semigroup and some nonlinear fractional differential equations, Appl. Math. Comput 149 (2004) 823-831.
[5] W. Fan, X. Jiang, S. Chen, Parameter estimation for the fractional fractal diffusion model based on its numerical solution, Computers & Mathematics with Applications 71 (2016) 642-651.
[6] T. Karite, A. Boutoulout, D. F. M. Torres, Enlarged Controllability of RiemannLiouville Fractional Differential Equations, Journal of Computational and Nonlinear Dynamics 13 (2018) 090907.
[7] A. Kilbas, H. Srivastava, J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, (2006).
[8] V. Kiryakova, A brief story about the operators of generalized fractional calculus, Fractional Calculus and Applied Analysis 11 (2008) 201-218.
[9] A. Lotfi, M. Dehghan, S. A. Yousefi, A numerical technique for solving fractional optimal control problems, Computers & Mathematics with Applications 62 (2011) 1055-1067.
[10] R. L. Magin, Fractional calculus in bioengineering, Crit. Rev. Biomed. Eng. 32 (2004) 1-104.
[11] I. Malmir, A New Fractional Integration Operational Matrix of Chebyshev Wavelets in Fractional Delay Systems, Fractal Fract. 3 (2019) 46-68.
[12] K. Malanowski, On normality of Lagrange multipliers for state constrained optimal control problems, Optimization 52 (2003) 75-91.
[13] G. M. Mophou, Optimal control of fractional diffusion equation, Computers & Mathematics with Applications 61 (2011) 68-78.
[14] G. M. Mophou, G. M. N’Gu´er´ekata, Optimal control of a fractional diffusion equation with state constraints, Computers & Mathematics with Applications 62 (2011) 1413-1426.
[15] B. Naderi , H. Kheiri, A. Heydari, AntiSynchronization of Complex Chaotic TSystem Via Optimal Adaptive Sliding-Mode and Its Applications In Secure Communication, Int. J. Industrial Mathematics 10 (2018) 181-192.
[16] M. R. Niknam, H. Kheiri, A. Heydari, Threeaxis optimal control of satellite attitude based on Ponteryagin maximum principle, Int. J. Industrial Mathematics 8 (2016) 41-48.
[17] I. Podlubny, Fractional Differential Equations, Academic Press, New York, (1999).
[18] S. Soradi Zeid, S. Effati, A. Vahidian Kamyad, Approximation methods for solving fractional optimal control problems, Comp. Appl. Math. 37 (2018) 158-182.
[19] V. V. Uchaikin, Fractional derivatives for physicists and engineers(Vol. 2), Springer, Berlin, (2013).
[20] D. H. Wagner, Survey of measurable selection theorems, SIAM Journal on Control and Optimization 15 (1977) 859-903.
[21] Ch J. Wang, Y. Zhou, Class of fractional evolution equations and optimal controls, Nonlinear Analysis: Real World Applications 12 (2011) 262-272.
[22] J. Wang, Y. Zhou, W. Wei, Optimal feedback control for semilinear fractional evolution equations in Banach spaces, system and control letters 61 (2011) 472-476.
[23] A. Yildirim, Y. G¨ulkanat, Reliable analysis for the nonlinear fractional calculus model of the semilunar heart valve vibrations, Int. J. Numer. Meth. Biomed. Engng 26 (2010) 1515-1521.
[24] T. A. Yıldız, A. Jajarmi, B. Yıldız, D. Baleanu, New aspects of time fractional optimal control problems within operators with nonsingular kernel, Discrete & Continuous Dynamical Systems-S 13 (2020) 407-428.