آثار آتشهای عمدی بخش کشاورزی بر محیط زیست (مطالعه موردی:استان اصفهان)
الموضوعات :جابر اعظمی 1 , سمیه پورهاشم ‏زهی 2
1 - دکترای تخصصی محیط زیست، استادیار گروه علوم محیط زیست، دانشکده علوم، دانشگاه زنجان، ایران. *(مسوول مکاتبات)
2 - کارشناسی ارشد علوم محیط زیست، گروه علوم محیطزیست، دانشکده علوم، دانشگاه زنجان، ایران.
الکلمات المفتاحية: آموزش, آتشسوزی عمدی, کشاورزی, محیط زیست,
ملخص المقالة :
ایران، گرچه با دوازده درصد سطح زیر کشت، رتبه ی سوم در تعداد و تنوع محصولات کشاورزی را در دنیا دارد؛ اما رتبه ی بالای 140 از 231 کشور در شاخص های زیست محیطی، بیان گر عدم توجه کافی آن به حفظ محیط زیست است. امروزه سوزاندن بقایای گیاهی، در جامعه ی کشاورزی ایران، به یک فرهنگ تبدیل شده است. در این مطالعه به مروری بر مطالعات قبلی، نتایج مصاحبه حضوری با کشاورزان و دهیارانِ شهرهای مختلفِ استان اصفهان و دلایل آتش زدن عمدی مزارع و بقایای گیاهان، آثار نامطلوب آن بر محیط زیست، تاثیرات مثبت حضور این مواد برای کشت های بعدی، معرفی کابردهای آ نها در صنایع مختلف و نقش آموزش جامعه روستایی پرداخته می شود. نتایج این مطالعه نشان داد از مهمترین دلیل سوزاندن عمدی، آماده سازی سریع مزرعه برای کشت بعدی و یا نابودی آفات خصوصا حشرات جوانه خوار در فصل بهار می باشد؛ در حالی که آتش، نه تنها موجب کاهش حاصل خیزی خاک، افزایش فرسایش آبی و بادی، نابودی میکروارگانیسم های بسیار مفید و آلودگی های هوا می شود؛ بلکه با برهنه شدن سطح خاک، کاهش نفوذ آب باران، ایجاد رواناب های سطحی، افزایش تبخیر و نیاز به آبیاری بیش تر می شود. همچنین این بقایا، نه تنها منابع غذایی مفیدی برای کشت بعدی محصول است بلکه می توان در صنایع مختلف از جمله صنعت چوب و کاغذ، صنعت پرورش گل و گیاه (قارچ)، صنعت تولید انرژی و خود صنعت کشاورزی استفاده گردند. آموزش جامعه ی کشاورزان، توسعه صنایع تبدیلی در روستا، پژوهش های کاربردپذیر کردن بقایای کشاورزی و تقویت مشوق های لازم دولتی از مهم ترین اقدامات لازم می باشد.
1) Cunningham, P., Cunningham, A., Saigo, W., 2001. Environmental science: A global concern. 4: McGraw-Hill Boston, 40-48.
2) Valipour, M., 2012. Critical areas of Iran for agriculture water management according to the annual rainfall. European Journal of Scientific Research, 84, 600-608.
3) Balasubramaniyan, C., Manivannan, D,. 2016. IoT Enabled Air Quality Monitoring System (AQMS) using Raspberry Pi. Indian Journal of Science and Technology, 9(39), 32-39.
4) Dehghani, S., Moore, F., Keshavarzi, B., Beverley, H,. 2017. Health risk implications of potentially toxic metals in street dust and surface soil of Tehran, Iran. Ecotoxicology and Environmental Safety, 136, 92-103.
5) Wagaw, K,. 2016. Characterization and Utilization of Bioslury from Anaerobic Digester for Fertilizer in Crop Production. J Fertil Pestic, 7(169), 2-15.
6) Hanjra, A., Qureshi, E,. 2010. Global water crisis and future food security in an era of climate change. Food Policy, 35(5), 365-377.
7) Bannayan, M., Sanjani, S., Alizadeh, A., Lotfabadi, S., Mohamadian, A,. 2010. Association between climate indices, aridity index, and rainfed crop yield in northeast of Iran. Field Crops Research, 118(2), 105-114.
8) Mohammadi, A., Tabatabaeefar, A., Shahin, S., Rafiee, S., Keyhani, A,. 2008. Energy use and economical analysis of potato production in Iran a case study: Ardabil province. Energy Conversion and Management, 49(12), 3566-3570.
9) MirMousavi, M,. 2016. Studying and analyzing the role of rural migrations in creating the informal section (case study: Tabriz megalopolis). Journal Managment System (In persian), 7(25), 23-42.
10) González-Pérez, J. A., González-Vila, F. J., Almendros, G., Knicker, H., 2004. The effect of fire on soil organic matter—a review. Environment international, 30(6), 855-870.
11) Robichaud, R., Lewis, A., Wagenbrenner, W., Ashmun, E., Brown, E., 2013. Post-fire mulching for runoff and erosion mitigation: Part I: Effectiveness at reducing hillslope erosion rates. Catena, 105, 75-92.
12) Choromanska, U., DeLuca, T., 2002. Microbial activity and nitrogen mineralization in forest mineral soils following heating: evaluation of post-fire effects. Soil Biology and Biochemistry, 34(2), 263-271.
13) Van der Werf, R., Randerson, T., Giglio, L., Collatz, G., Mu, M., Kasibhatla, P. S., . . . van Leeuwen, T., 2010. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry and Physics, 10(23), 11707-11735.
14) Garrett, D., 2013. Soil fungi and soil fertility: an introduction to soil mycology: Elsevier, 12:12-19.
15) Aazami, J., Esmaili-Sari, A., Abdoli, A., Sohrabi, H., Van den Brink, J., 2015. Monitoring and assessment of water health quality in the Tajan River, Iran using physicochemical, fish and macroinvertebrates indices. Journal of Environmental Health Science and Engineering, 13(1), 1-18.
16) DeBano, F., 2000. The role of fire and soil heating on water repellency in wildland environments: a review. Journal of Hydrology, 231, 195-206.
17) Stohl, A., Berg, T., Burkhart, J., Fjǽraa, A., Forster, C., Herber, A., . . . Oltmans, S., 2007. Arctic smoke–record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006. Atmospheric Chemistry and Physics, 7(2), 511-534.
18) Liao, J., Boutton, T., Jastrow, J., 2006. Storage and dynamics of carbon and nitrogen in soil physical fractions following woody plant invasion of grassland. Soil Biology and Biochemistry, 38(11), 3184-3196.
19) Stockwell, C. E., Jayarathne, T., Cochrane, M., Ryan, C., Putra, E. I., Saharjo, B. H., . . . Simpson, I. J., 2016. Field measurements of trace gases and aerosols emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño. Atmospheric Chemistry and Physics, 16(18), 11711-11732.
20) FAO., 2008. Food and Agriculture Organization of the United Nations: Fire management in Agriculture, a Global Assessment. http://www.fao.org/docrep/009/a0969e/a0969e00.htm, 151 pp.
21) Loehr, R., 2012. Agricultural waste management: problems, processes, and approaches: Elsevier.
22) MirMousavi, M., 2016. Studying and analyzing the role of rural migrations in creating the informal section (case study: Tabriz megalopolis). Journal Managment System (In persian), 7(25), 23-42.
23) Rousu, P., Rousu, P., Anttila, J., 2002. Sustainable pulp production from agricultural waste. Resources, Conservation and Recycling, 35(1–2), 85-103.
24) Ashori, A., Nourbakhsh, A., 2009. Studies on Iranian cultivated paulownia–a potential source of fibrous raw material for paper industry. European Journal of Wood and Wood Products, 67(3), 323-327.
25) Fazli-Roya, Saeed Kamrani, Nazarnezhad, N., 2011. Estimating amount of agricultural residuals useable in wood and paper Industries (case study: Golestan province). Human and Environment, 9(4), 33-38.
26) Garg, P., Gupta, A., Satya, S., 2006. Vermicomposting of different types of waste using Eisenia foetida: A comparative study. Bioresource Technology, 97(3), 391-395.
27) Guo, X. M., Trably, E., Latrille, E., Carrere, H., Steyer, J.-P., 2010. Hydrogen production from agricultural waste by dark fermentation: a review. International Journal of Hydrogen Energy, 35(19), 10660-10673.
28) Yang, Y.-J., Dungan, R. S., Ibekwe, A. M., Valenzuela-Solano, C., Crohn, D. M., Crowley, D. E., 2003. Effect of organic mulches on soil bacterial communities one year after application. Biology and Fertility of Soils, 38(5), 273-281.
29) Kalita, M., Talukdar, M., 2016. Rural Environment of Assam and People’s Environmental Behaviour. International Education and Research Journal, 2(11), 52-61.
_||_1) Cunningham, P., Cunningham, A., Saigo, W., 2001. Environmental science: A global concern. 4: McGraw-Hill Boston, 40-48.
2) Valipour, M., 2012. Critical areas of Iran for agriculture water management according to the annual rainfall. European Journal of Scientific Research, 84, 600-608.
3) Balasubramaniyan, C., Manivannan, D,. 2016. IoT Enabled Air Quality Monitoring System (AQMS) using Raspberry Pi. Indian Journal of Science and Technology, 9(39), 32-39.
4) Dehghani, S., Moore, F., Keshavarzi, B., Beverley, H,. 2017. Health risk implications of potentially toxic metals in street dust and surface soil of Tehran, Iran. Ecotoxicology and Environmental Safety, 136, 92-103.
5) Wagaw, K,. 2016. Characterization and Utilization of Bioslury from Anaerobic Digester for Fertilizer in Crop Production. J Fertil Pestic, 7(169), 2-15.
6) Hanjra, A., Qureshi, E,. 2010. Global water crisis and future food security in an era of climate change. Food Policy, 35(5), 365-377.
7) Bannayan, M., Sanjani, S., Alizadeh, A., Lotfabadi, S., Mohamadian, A,. 2010. Association between climate indices, aridity index, and rainfed crop yield in northeast of Iran. Field Crops Research, 118(2), 105-114.
8) Mohammadi, A., Tabatabaeefar, A., Shahin, S., Rafiee, S., Keyhani, A,. 2008. Energy use and economical analysis of potato production in Iran a case study: Ardabil province. Energy Conversion and Management, 49(12), 3566-3570.
9) MirMousavi, M,. 2016. Studying and analyzing the role of rural migrations in creating the informal section (case study: Tabriz megalopolis). Journal Managment System (In persian), 7(25), 23-42.
10) González-Pérez, J. A., González-Vila, F. J., Almendros, G., Knicker, H., 2004. The effect of fire on soil organic matter—a review. Environment international, 30(6), 855-870.
11) Robichaud, R., Lewis, A., Wagenbrenner, W., Ashmun, E., Brown, E., 2013. Post-fire mulching for runoff and erosion mitigation: Part I: Effectiveness at reducing hillslope erosion rates. Catena, 105, 75-92.
12) Choromanska, U., DeLuca, T., 2002. Microbial activity and nitrogen mineralization in forest mineral soils following heating: evaluation of post-fire effects. Soil Biology and Biochemistry, 34(2), 263-271.
13) Van der Werf, R., Randerson, T., Giglio, L., Collatz, G., Mu, M., Kasibhatla, P. S., . . . van Leeuwen, T., 2010. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry and Physics, 10(23), 11707-11735.
14) Garrett, D., 2013. Soil fungi and soil fertility: an introduction to soil mycology: Elsevier, 12:12-19.
15) Aazami, J., Esmaili-Sari, A., Abdoli, A., Sohrabi, H., Van den Brink, J., 2015. Monitoring and assessment of water health quality in the Tajan River, Iran using physicochemical, fish and macroinvertebrates indices. Journal of Environmental Health Science and Engineering, 13(1), 1-18.
16) DeBano, F., 2000. The role of fire and soil heating on water repellency in wildland environments: a review. Journal of Hydrology, 231, 195-206.
17) Stohl, A., Berg, T., Burkhart, J., Fjǽraa, A., Forster, C., Herber, A., . . . Oltmans, S., 2007. Arctic smoke–record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006. Atmospheric Chemistry and Physics, 7(2), 511-534.
18) Liao, J., Boutton, T., Jastrow, J., 2006. Storage and dynamics of carbon and nitrogen in soil physical fractions following woody plant invasion of grassland. Soil Biology and Biochemistry, 38(11), 3184-3196.
19) Stockwell, C. E., Jayarathne, T., Cochrane, M., Ryan, C., Putra, E. I., Saharjo, B. H., . . . Simpson, I. J., 2016. Field measurements of trace gases and aerosols emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño. Atmospheric Chemistry and Physics, 16(18), 11711-11732.
20) FAO., 2008. Food and Agriculture Organization of the United Nations: Fire management in Agriculture, a Global Assessment. http://www.fao.org/docrep/009/a0969e/a0969e00.htm, 151 pp.
21) Loehr, R., 2012. Agricultural waste management: problems, processes, and approaches: Elsevier.
22) MirMousavi, M., 2016. Studying and analyzing the role of rural migrations in creating the informal section (case study: Tabriz megalopolis). Journal Managment System (In persian), 7(25), 23-42.
23) Rousu, P., Rousu, P., Anttila, J., 2002. Sustainable pulp production from agricultural waste. Resources, Conservation and Recycling, 35(1–2), 85-103.
24) Ashori, A., Nourbakhsh, A., 2009. Studies on Iranian cultivated paulownia–a potential source of fibrous raw material for paper industry. European Journal of Wood and Wood Products, 67(3), 323-327.
25) Fazli-Roya, Saeed Kamrani, Nazarnezhad, N., 2011. Estimating amount of agricultural residuals useable in wood and paper Industries (case study: Golestan province). Human and Environment, 9(4), 33-38.
26) Garg, P., Gupta, A., Satya, S., 2006. Vermicomposting of different types of waste using Eisenia foetida: A comparative study. Bioresource Technology, 97(3), 391-395.
27) Guo, X. M., Trably, E., Latrille, E., Carrere, H., Steyer, J.-P., 2010. Hydrogen production from agricultural waste by dark fermentation: a review. International Journal of Hydrogen Energy, 35(19), 10660-10673.
28) Yang, Y.-J., Dungan, R. S., Ibekwe, A. M., Valenzuela-Solano, C., Crohn, D. M., Crowley, D. E., 2003. Effect of organic mulches on soil bacterial communities one year after application. Biology and Fertility of Soils, 38(5), 273-281.
29) Kalita, M., Talukdar, M., 2016. Rural Environment of Assam and People’s Environmental Behaviour. International Education and Research Journal, 2(11), 52-61.