تکنیکهای پرایمینگ بذر برای افزایش تولید سبزیجات
الموضوعات :
1 - کارشناس ارشد، گروه علوم و مهندسی باغبانی، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران
2 - کارشناس ارشد، گروه علوم و مهندسی باغبانی، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
الکلمات المفتاحية: نشاسته, پروتئین, جوانه زنی, محصولات باغی, خواب بذر,
ملخص المقالة :
محصولات باغی به ویژه سبزیجات به دلیل حجم کم و ارزش بالا لازم است از فناوری آماده کردن بذر بهره برند. کاشت زودهنگام سبزیجات در محیطهای غیربهینه اغلب برای دریافت سود بهتر در بازار انجام میشود، اگرچه به طور همزمان کشاورزان را مجبور میکند تا از قوه نامیه بذر بالا برای جبران تولید نشاء استفاده کنند. برای مقابله با این مشکل، کشاورزان و شرکتهای تولید بذر در سراسر جهان، تکنیکهای پرایمینگ بذرها را انجام میدهند، زیرا همزمانی در گلدهی و باردهی را تسهیل میکند و در نتیجه عملکرد بهبود مییابد. استراتژی های مختلف آماده سازی مورد استفاده برای تیمار بذر به دو دسته معمولی/تهاجمی (هیدرو، اسمو، هورمونی، هاله، ماتریکس جامد، مواد مغذی، زیستی یا نانو پرایمینگ) و فیزیکی/غیرتهاجمی (مغناطیسی، اشعه ماوراء بنفش) طبقهبندی میشوند. مزایای آماده سازی بذر شامل: زمان سبز شدن گیاه، هزینه کاشت مجدد، آبیاری و کوددهی اضافی، مدیریت علفهای هرز، رشد یکنواخت. بررسی جامع در مورد تکنیکهای آماده سازی بذر اعمال شده در محصولات کم حجم مانند سبزیجات مورد توجه قرار نگرفته است. این بررسی مزایای تکنیکهای مختلف آماده سازی بذر برای سبزیجات را بیان میکند.
1) Abbas, M., Arshad, M., Nisar, N, Nisar, J, Ghaffar, A. and A, Nazir. 2017. Muscilage characterization, biochemical and enzymatic activities of laser irradiated Lagenaria siceraria seedlings. Journal of Photochemistry and Photobiology B: 173: 344–352.
2) Acharya, P., Jayaprakasha, G.K. and K.M, Crosby. 2020. Nanoparticle-mediated seed priming improves germination, growth, yield, and quality of watermelons (Citrullus lanatus) at multi-locations in Texas. Scientific Reports. 10: 5037.
3) Araújo, S.S., Paparella, S., Dondi, D., Bentivoglio, A., Carbonera, D. and A, Balestrazzi. 2016. Physical methods for seed invigoration: advantages and challenges in seed technology. Frontiers in Plant Science. 7: 646.
4) Barba-Espin, G., Diaz-Vivancos, P., Job, D., Belghazi, M., Job, C. and J.A, Hernandez. 2011. Understanding the role of H2O2 during pea seed germination: a combined proteomic and hormone profiling approach. Plant Cell Environ. 34: 1907–1919.
5) Bewley, J.D. and M, Black. 1994. Seeds: Physiology of Development and Germination, 2nd edn. Plenum Press, New York.
6) Beyaz, R., Kahramanogullari, C.T., Yildiz, C., Darcin, E.S. and M, Yildiz. 2016. The effect of gamma radiation on seed germination and seedling growth of Lathyrus chrysanthus Boiss. Under in vitro conditions. Journal of Environmental Radioactivity. 162-163, 1–5.
7) Bhardwaj, J., Anand, A., Pandita, V.K. and S, Nagarajan. 2016. Pulsed magnetic field improves seed quality of aged green pea seeds by homeostasis of free radical content. Journal of Food Science and Technology. 53 (11): 3969–3977.
8) Carrillo-Reche, J., Vallejo-Marín, M. and R.S, Quilliam. 2018. Quantifying the potential of ‘on-farm’ seed priming to increase crop performance in developing countries. A meta-analysis. Agronomy for Sustainable Development. 38, 64.
9) Chen, Y.P., Liu, Y.J., Wang, X.L., Ren, Z.Y. and M, Yue. 2005. Effect of microwave and HeNe laser on enzyme activity and biophoton emission of Isatis indigotica Fort. Journal of Integrative Plant Biology. 47: 849–855.
10) Corbineau, F., Ozbincol, N., Vinel, D. and D, Come. 2000. Improvement of tomato seed germination by osmopriming as related to energy metabolism. In: Black, M., Bradford, K.J., Vazquez-Ramos, J. (Eds.), Seed Biology: Advances and Applications. CABI, OXon, UK, pp. 467–487.
11) Di Girolamo, G. and L, Barbanti. 2012. Treatment conditions and biochemical processes influencing seed priming effectiveness. Italian Journal of Agronomy. 7: 178–188.
12) Dillon, F.M., Tejedor, M.D., Ilina, N., Chludil, H.D., Mitho¨fer, A., Pagano, E.A. and J.A, Zavala. 2018. Solar UV-B radiation and ethylene play a key role in modulating effective defenses against Anticarsia gemmatalis larvae in field-grown soybean. Plant, Cell and Environment. 41, 383–394.
13) Fan, X., Sokorai, K., Weidauer, A., Gotzmann, G., Rogner, F.-H. and E, Koch. 2017. Comparison of gamma and electron beam irradiation in reducing populations of E. coli artificially inoculated on mung bean, clover and fenugreek seeds, and affecting germination and growth of seeds. Radiation Physics and Chemistry. 130: 306–315.
14) Farooq, M., Usman, M., Nadeem, F., ur Rehman, H., Wahid, A., Basra, S.M.A. and K.H.M, Siddique. 2019. Seed priming in field crops: potential benefits, adoption and challenges. Crop & Pasture Science. 70: 731–771.
15) Farooq, M., Basra, S.M.A., Tabassum, R. and I, Afzal. 2006. Enhancing the performance of direct seeded fine rice by seed priming. Plant Production Science. 9 (4): 446–456.
16) Farooq, M., Wahid, A. and K.H.M, Siddique. 2012. Micronutrient application through seed treatments-a review. Journal of Soil Science and Plant Nutrition. 12: 125–142.
17) Forti, C., Ottobrino, V. and L, Bassolino. 2020. Molecular dynamics of pre-germinative metabolism in primed eggplant (Solanum melongena L.) seeds. Horticulture Research. 7, 87.
18) Gicquel, M., Taconnat, L., Renou, J.P., Esnault, M.A. and F, Cabello-Hurtado. 2012. Kinetic transcriptomic approach revealed metabolic pathways and genotoXic-related changes implied in the Arabidopsis response to ionizing radiations. Plant Science. 195: 106–119.
19) Hertwig, C, Meneses, N. and A, Mathys. 2018. Cold atmospheric pressure plasma and low energy electron beam as alternative nonthermal decontamination technologies for dry food surfaces: a review. Trends in Food Science and Technology. 77: 131–142.
20) Jan, S., Parween, T., Siddiqi, T.O., and M, Uzzafar. 2012. Effect of gamma radiation on morphological, biochemical and physiological aspects of plants and plant products. Environmental Reviews. 20: 17–39.
21) Joshi, S., Joshi, G. and H, Agrawal. 2012. Study on the effect of laser irradiation on wheat (Triticum aestivum L.) variety PBW-373 seeds on zinc uptake by wheat plants. Journal of Radioanalytical and Nuclear Chemistry. 294: 391–394.
22) Khalaki, M.A., Asgari, M.M., Lajayer, B.A. and A, Tess. 2021. Influence of nano-priming on seed germination and plant growth of forage and medicinal plants. Plant Growth Regulation. 93: 13–28.
23) Kiran, K.R., Deepika, V.B., Swathy, P.S., Prasad, K., Kabekkodu, S.P., Murali, T.S., Satyamoorthy, K. and A, Muthusamy. 2020. ROS-dependent DNA damage and repair during germination of NaCl primed seeds. Journal of Photochemistry and Photobiology B: Biology . 213: 112050.
24) Lung, H.M., Cheng, Y.C., Chang, Y.H. and H.W, Huang, 2015. Microbial decontamination of food by electron beam irradiation. Trends in Food Science and Technology. 44: 66–78.
25) Lutts, S., Benincasa, P., Wojtyla, L., Szymon Kubala, S., Pace, R., Lechowska, K., Quinet, M. and M, Garnczarska. 2016. Seed priming: new comprehensive approaches for an old empirical technique. New challenges in seed biology basic and translational research driving seed technology. IntechOpen.
26) Mahmood, A., Turgay, O., Farooq, M. and R, Hayat. 2016. Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiology Ecology. 92, fiw112.
27) Majeed, A., Muhammad, Z., Ullah, R. and H, Ali. 2018. Gamma irradiation : effect on germination and general growth characteristics of plants–a review. Pakistan Journal of Botany. 50: 2449–2453.
28) Makarov, V.V., Love, A.J., Sinitsyna, O.V. and S.S, Makarova. 2014. Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae. 6 (1): 35–44.
29) Mazhar, M.W., Ishtiaq, M., Hussain, I., Parveen, A., Hayat, B.K., and M, Azeem. 2022. Seed nano-priming with Zinc OXide nanoparticles in rice mitigates drought and enhances agronomic profile. PLoS ONE 17 (3): e0264967.
30) McDonald, M.B. 2000. Seed Priming. Seed Technology and its Biological Basis. Sheffield Academic Press, Sheffield, pp. 287–325.
31) Mehta, D.K., Thakur, C. and K.S, Thakur. 2013. Effect of solid matrix priming of seed on emergence, growth and yield of cucumber. Green Farming 4 (3): 364–366
32) Melki, M., and D, Sallami, 2008. Studies the effects of low dose of gamma rays on the behaviour of chickpea under various conditions. Pakistan journal of biological sciences. 11: 2326–2330.
33) Myint, T., Chanprasert, W. and S, Srikul. 2010. Effect of seed weight on germination potential of different oil palm (Elaeis guineensis Jacq.) crosses. Seed Science and Technology. 58: 125–135.
34) Nonogaki, H., Chen, F. and K.J, Bradford. 2007. Mechanisms and genes involved in germination sensu strict. In: Bradford, K.J., Nonogaki, H. (Eds.), Seed Development, Dormancy and Germination. Blackwell, OXford, pp. 264–304.
35) O¨ zbingo¨l, N., Corbineau, F., Groot, S.P.C., Bino, R.J. and D, Coˆme. 1999. Activation of the cell cycle in tomato (Lycopersicon esculentum Mill.) seeds during osmoconditioning as related to temperature and Oxygen. Annals of Botany. 84: 245–251.
36) Panda, D. and S, Mondal. 2020. Seed enhancement for sustainable agriculture: an overview of recent trends. Plant Arch. 20, 2320–2332.
37) Paparella, S., Araújo, S.S., Rossi, G., Wijayasinghe, M., Carbonera, D. and A, Balestrazzi. 2015. Seed priming: state of the art and new perspectives. Plant Cell Reports. 34 (8): 1281–1293.
38) Perveen, R., Ali, Q., Ashraf, M., Al-Qurainy, F., Jamil, Y. and M, Raza Ahmad. 2010. Effects of different doses of low power continuous wave he-ne laser radiation on some seed thermodynamic and germination parameters, and potential enzymes involved in seed germination of sunflower (Helianthus annuus L.). Photochemistry and Photobiology. 86 (5): 1050–1055.
39) Qi, W., Zhang, L., Wang, L., Xu, H., Jin, Q. and Z, Jiao. 2015. Pretreatment with low-dose gamma irradiation enhances tolerance to the stress of cadmium and lead in Arabidopsis thaliana seedlings. Ecotoxicology and Environmental Safety. 115: 243–249.
40) Rajendra Prasad, S., Kamble, U.R. and KV, Sripathy. 2016. Seed bio-priming for biotic and abiotic stress management. Microbial Inoculants in Sustainable Agricultural Productivity.
41) Razmjoo, J. and S, Alinian. 2017. Influence of magnetopriming on germination, growth, physiology, oil and essential contents of cumin (Cuminum cyminum L.). Electromagnetic Biology and Medicine. 36: 325–329.
42) Rehman, A., Farooq, M., Naveed, M., Nawaz, A. and B, Shahzad. 2018. Seed priming of Zn with endophytic bacteria improves the productivity and grain biofortification of bread wheat. European Journal of Agronomy. 94: 98–107.
43) Robledo, D.A.R. 2020. Effects of halopriming on seed germination and seedling emergence of Capsicum frutescens. Journal of Botany Research. 3 (1): 114–118.
44) Rodríguez-Gacio, M., Matilla-V´azquez, M.A. and AJ, Matilla. 2009. Seed dormancy and ABA signaling: the breakthrough goes on. Plant Signaling & Behavior. 4 (11): 1035–1049.
45) Rosental, L., Nonogaki, H. and A, Fait, 2014. Activation and regulation of primary metabolism during seed germination. Seed Science Research. 24: 1–15.
46) Sedghi, M., Nemati, A., Amanpour-Balaneji, B. and A, Gholipouri. 2010. Influence of different priming materials on germination and seedling establishment of milk thistle (Silybum marianum) under salinity stress. World Applied Sciences Journal. 11: 604–609.
47) Shivankar, R.S., Deore, D.B. and N.G, Zode. 2003. Effect of pre-sowing seed treatment on establishment and seed yield of sunflower. Journal of Oilseeds Research. 20: 299–300.
48) Sitton, J.W., Borsa, J., Schultz, T. and J.D, Maguire. 1995. Electron beam irradiation effects on wheat quality, seed vigor, and viability and pathogenicity of teliospores of Tilletia controversa and T. tritici. Plant Disease. 79: 586–589.
49) Swathy, P.S., Kiran, K.R. and M.B, Joshi. 2021. He-Ne laser accelerates seed germination by modulating growth hormones and reprogramming metabolism in brinjal. Scientific Reports. 11: 7948.
50) Thakur, M., Sharma, P., Anand, A., Pandita, V.K., Bhatia, A. and S, Pushkar. 2020. Raffinose and hexose sugar content during germination are related to infrared thermal fingerprints of primed onion (Allium cepa L.) seeds. Frontiers in Plant Science. 11: 579037.
51) Thakur, M., Tiwari, S., Sunita Kataria, S. and Anand, A. 2022. Recent advances in seed priming strategies for enhancing planting value of vegetable seeds. Scientia Horticulturae 305: 111355.
52) Thomas, T.T. and JT, Puthur. 2017. UV radiation priming: A means of amplifying the inherent potential for abiotic stress tolerance in crop plants. Environmental and Experimental Botany. 138: 57–66.
53) van Pijlen, J.G., Groot, S.P.C., Kraak, H.L., Bergervoet, J.H.W. and RJ, Bino. 1996. Effects of pre-storage hydration and controlled deterioration treatments on germination performance, moisture content and DNA synthesis of tomato (Lycopersicon esculentum Mill.) seeds. Seed Science Research. 6: 57–63.
54) Waskow, A., Howling, A. and I, Furno. 2021. Mechanisms of plasma-seed treatments as a potential seed processing technology. Frontiers in Physics. 9; 617345.
55) Willigen, V.C., Postaire, O., Tournaire-RouX, C., Boursiac, Y., and C, Maurel. 2006. EXpression and inhibition of aquaporins in germinating Arabidopsis seeds. Plant and Cell Physiology 47: 1241–1250.
56) Wojtyla, Ł., Lechowska, K., Kubala, S., and M, Garnczarska. 2016. Different modes of hydrogen peroXide action during seed germination. Frontiers in Plant Science. 7: 66.
57) Yan, D., Sherman, J.H. and M, Keidar. 2017. Cold atmospheric plasma, a novel promising anticancer treatment modality. Oncotarget 8: 15977–15995.
58) Zhou, Y., Chu, P. and H, Chen, 2012. Overexpression of Nelumbo nucifera metallothioneins 2a and 3 enhances seed germination vigor in Arabidopsis. Planta 235: 523–537.