بررسی اثر نانوذرات نقره بر بیان ژنهای اگزوتوکسین A و S در سودوموناس آئروژینوزا
الموضوعات :محمد همتی 1 , زهرا کشتمند 2 , کتایون برهانی 3
1 - دانشجوی کارشناسی ارشد، گروه زیستشناسی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران
2 - استادیار، گروه زیستشناسی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران
3 - استادیار، گروه مهندسی محیط زیست و صنایع غذایی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران
الکلمات المفتاحية: سودوموناس آئروژینوزا, اگزوتوکسین S, نانوذرات نقره, اگزوتوکسین A,
ملخص المقالة :
هدف: سودوموناس آئروژینوزایکی از مهمترین عوامل عفونتهای بیمارستانی است و ژنهای اگزوتوکسین در بروز این عفونت دارای اهمیت میباشد. از سویی با پیشرفت علم فناوری نانو، امروزه استفاده از نانوذرات به طور گستردهای در زمینه درمانی و دارویی بویژه بر علیه میکروبها مورد توجه قرار گرفته است. لذا، تحقیق حاضر با هدف بررسی تاثیر نانوذرات نقره (AgNPs) بر بیان ژنهای اگزوتوکسین A و S سودوموناس آئروژینوزا انجام شده است. مواد و روشها:در این مطالعه تجربی، حداقل غلظت مهار رشد نانوذرات نقره با روش میکرودایلوشن تعیین شد. ابتدا کمترین غلظت مهارکننده رشد باکتری با نانوذرات نقره تعیین گردیده، سپس در غلظت پایینتر از کمترین غلظت مهار رشد، میزان بیان ژنهای اگزوتوکسین A و S سودوموناس آئروژینوزا با روش Real Time PCR مورد بررسی قرار گرفت. دادههای به دست آمده با استفاده ازANONA یکطرفه، تست توکی و p value کمتر از 05/0 ارزیابی شد. نتایج نانوذرات نقره با غلظت 5/62 میکروگرم بر میلیلیتر، اثرات مهار رشد بر باکتری سودوموناس آئروژینوزا را داشته، همچنین در غلظت 25/31 بیان ژنهای اگزوتوکسین A و S سودوموناس آئروژینوزابه نسبت معنیدار کاهش یافت (05/0p <). نتایج: نانوذرات نقره با غلظت 5/62 میکروگرم بر میلیلیتر، اثرات مهار رشد بر باکتری سودوموناس آئروژینوزا را داشته، همچنین در غلظت 25/31 بیان ژنهای اگزوتوکسین A و S سودوموناس آئروژینوزا به نسبت معنیدار کاهش یافت (05/0p <). نتیجهگیری: نتایج حاصل از این مطالعه نشان میدهد که غلظت پایینتر (25/31 میکروگرم بر میلیلیتر) از غلظت مهار رشد (5/62 میکروگرم بر میلیلیتر)، میتواند باعث کاهش بیان ژنهای اگزوتوکسین A و S سودوموناس آئروژینوزا شود.
Soltan DM & et al. Inhibitory effect of Lactobacillus plantarum and Lactobacillus fermentum isolated from the faeces of healthy infants against nonfermentative bacteria causing nosocomial infections. New Microbes New Infect. 2017; 15: 9-13.
Motaghi B & Mojafipour S. Outer Membrance Protein D Gene in clinical Isolates of Pseudomonas Aeruginosa and its Role in Antibiotic Resistance. Journal of Fasa University of medical Sciences. 2016; 5(4): 501-507.
Tang Y & et al. Genotyping of Pseudomonas aeruginosa Type III Secretion System Using Magnet ic EnrichmentMultiplex Polymerase Chain Reaction and Chemiluminescence. Journal of Biomedical Nanotechnology.2016; 12(4): 762-769.
Mokari M, Owlia P, Marashi SMA, Saderi H & Dehghan Zadeh Z. The effect of supernatant of Saccharomyces cerevisiae yeast on preventing the growth of Pseudomonas aeruginosa bacteria and its effect on exotoxin S gene expression in Pseudomonas aeruginosa bacteria by Real-Time PCR methodd. Daneshvar Medicine: Basic and Clinical Research Jouranl. 2018; 25(6): 67-74.
BouillotS,AttréeI & HuberP. Pharmacological Activation of Rap1 Antagonizes the Endothelial Barrier Disruption Induced by Exotoxins ExoS and ExoT of Pseudomonas aeruginosa. Infect Immun. 2015; 83(5): 1820-1829.
Pavlovskis OR, Iglewski BH & Pollack M. Mechanism of action of Pseudomonas aeruginosa exotoxin A in experimental mouse infections: adenosine diphosphate ribosylation of elongation factor 2. Infection and Immunity. 1978; 19(1): 29-33.
Donelli G & Vuotto C. Biofilm based infections in long term care facilities. Future Microbiology. 2014; 9: 175-188.
Tran QH, Nguyen VQ & Le A. Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Advances in Natural Sciences:Nanoscience and Nanotechnology. 2013; 4(3).
Mortazavi H, Nakhaei Moghaddam M & Abadi NS. Study of the Effect of Silver Nanoparticles on Biofilms Formation by Staphylococcus epidermidis. Journal of Rafsanjan University of Medical Sciences. 2015; 14(2): 125-136.
Björndahl MR, Cao LJ, Nissen S, Clasper LA, Johnson Y, Xue Z & et al. Lnsulin-like growth factors 1 and 2 induce lymphangiogenesis in vivo. Proceedings of the National Academy of Sciences. 2005; 102(43): 15593-15598.
Heinlaan M, Lvask A, Blinov L, Dubourgier HC & Kahur A. Toxicity of nanosized and bulk Zno, Cuo and Tio 2 to bacteria vibrio Fischer and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere. 2008; 71(7): 1308-1316.
Fernando S, Gunasekara T & Holton J. Antimicrobial Nanoparticles: Applications and mechanisms of action. Sri Lankan Journal of Infectious Diseases. 2018; 8(1): 2-11
Zargar M & Mohamadeibandarei N. Silver nanoparticles and their applications. Applied Biology. 2013; 3(11): 13-31.
Kavyani B, Alikhani MY, Arabestani MR, Moradkhani SH & Taheri M. The effect of garlic extract on the expression of genes elastase andexotoxin A in Pseudomonas aeruginosa. Tehran University Medical Journal. 2016; 74(8): 584-590.
Elgayyar M, Draughon FA, Golden DA & Mount JR. Antimicrobial activity of Essential oils from plants against selected pathogenic and saprophytic microorganisms. Journal of Food Protection. 2001; 64(7): 1019-1024.
Pirigharaghie T & Sadatshandiz A. The Inhibitory Effects of Silver Nanoparticles on Bap Gene Expression in Antibiotic-Resistant Acientobacter bumanni Isolates using Real-Time PCR. Scientific Journal of Ilam University of Medical Sciences. 2018; 26(4): 175-185.
Tong Zh & et al. Modified protocol for RNA extraction from different peach tissues suitable for gene isolation and Real-Time PCR analysis. Molecular Biotechnology. 2012; 50(3): 229-236.
Azizi O & et al. Molecular analysis and expression of bap gene in biofilm forming multi drug-resistant Acinetobacter baumannii. Report of Biochemistry Molecular Biology. 2016; 5: 68-74.
Liesje S, Bart D, Paul V, Benny F & Pyck G. The Antibacterial Activity of Biogenic Silver and Its Mode of Action. World Journal of Microbialogy and Biotechnology. 2011; 31(2): 113-189.
Flockton, TR, Schnorbus L, Araujo A, Adams J, Hammel M & Perez LJ. Inhibition of Pseudomonas aeruginosa Biofilm Formation with Surface Modified Polymeric Nanoparticles. Pathogens. 2019; 8(2): 55.
Yuan YG, Peng QL & Gurunathan S. Effects of silver nanoparticles on multiple
drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa from mastitis-infected goats: An alternative approach for antimicrobial therapy. International journal of molecular sciences. 2017; 18(3): 569.
Darabpour E, Doroodmand MM, Halabian R & Imani Fooladi AA. Sulfur-Functionalized Fullerene Nanoparticle as an Inhibitor and Eliminator Agent on Pseudomonas aeruginosa Biofilm and Expression of toxA Gene. Microbial Drug Resistance. 2019; 25(4): 594-602.
Singh R, Nadhe S, Wadhwani S, Shedbalkar U & Chopade B. A nanoparticles for control of biofilms of Acinetobacter species. Multidisciplinary Digital Publishing Institute. 2016; 9(5): 383.
Hendiani S, Abdiali A, Mohammadi P. Comparison of two methods for quantification of Acinetobacter baumannii biofilm formation. Biological Journal of Microorganism. 2014; 2(8): 51-56.
Palanisamy NK, Ferina N, Amirulhusni AN, Mohd-Zain Z, Hussaini J, Ping J & Durairaj R. Antibiofilm properties of chemically synthesized silver nanoparticles found against Pseudomonas aeruginosa. Journal of nanobiotechnology. 2014; 12(2): 2-7
Camporotondi D, Foglia M, Alvarez G, Mebert A, Diaz L, Coradin T & Desimone M. Antimicrobial properties of silica modified nanoparticles. Microbial Pathogens and Strategies for Combating Them. Science, Technology and Education; Microbiology Book Series. 2013: 283-290.
Yeo Y, Ito T, Bellas E, Highley CB, Marini R & Kohane DS. In situ cross-linkable hyaluronan hydrogels containing polymeric nanoparticles for preventing postsurgical adhesions. Annals of surgery. 2007; 245(5): 819.
_||_Soltan DM & et al. Inhibitory effect of Lactobacillus plantarum and Lactobacillus fermentum isolated from the faeces of healthy infants against nonfermentative bacteria causing nosocomial infections. New Microbes New Infect. 2017; 15: 9-13.
Motaghi B & Mojafipour S. Outer Membrance Protein D Gene in clinical Isolates of Pseudomonas Aeruginosa and its Role in Antibiotic Resistance. Journal of Fasa University of medical Sciences. 2016; 5(4): 501-507.
Tang Y & et al. Genotyping of Pseudomonas aeruginosa Type III Secretion System Using Magnet ic EnrichmentMultiplex Polymerase Chain Reaction and Chemiluminescence. Journal of Biomedical Nanotechnology.2016; 12(4): 762-769.
Mokari M, Owlia P, Marashi SMA, Saderi H & Dehghan Zadeh Z. The effect of supernatant of Saccharomyces cerevisiae yeast on preventing the growth of Pseudomonas aeruginosa bacteria and its effect on exotoxin S gene expression in Pseudomonas aeruginosa bacteria by Real-Time PCR methodd. Daneshvar Medicine: Basic and Clinical Research Jouranl. 2018; 25(6): 67-74.
BouillotS,AttréeI & HuberP. Pharmacological Activation of Rap1 Antagonizes the Endothelial Barrier Disruption Induced by Exotoxins ExoS and ExoT of Pseudomonas aeruginosa. Infect Immun. 2015; 83(5): 1820-1829.
Pavlovskis OR, Iglewski BH & Pollack M. Mechanism of action of Pseudomonas aeruginosa exotoxin A in experimental mouse infections: adenosine diphosphate ribosylation of elongation factor 2. Infection and Immunity. 1978; 19(1): 29-33.
Donelli G & Vuotto C. Biofilm based infections in long term care facilities. Future Microbiology. 2014; 9: 175-188.
Tran QH, Nguyen VQ & Le A. Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Advances in Natural Sciences:Nanoscience and Nanotechnology. 2013; 4(3).
Mortazavi H, Nakhaei Moghaddam M & Abadi NS. Study of the Effect of Silver Nanoparticles on Biofilms Formation by Staphylococcus epidermidis. Journal of Rafsanjan University of Medical Sciences. 2015; 14(2): 125-136.
Björndahl MR, Cao LJ, Nissen S, Clasper LA, Johnson Y, Xue Z & et al. Lnsulin-like growth factors 1 and 2 induce lymphangiogenesis in vivo. Proceedings of the National Academy of Sciences. 2005; 102(43): 15593-15598.
Heinlaan M, Lvask A, Blinov L, Dubourgier HC & Kahur A. Toxicity of nanosized and bulk Zno, Cuo and Tio 2 to bacteria vibrio Fischer and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere. 2008; 71(7): 1308-1316.
Fernando S, Gunasekara T & Holton J. Antimicrobial Nanoparticles: Applications and mechanisms of action. Sri Lankan Journal of Infectious Diseases. 2018; 8(1): 2-11
Zargar M & Mohamadeibandarei N. Silver nanoparticles and their applications. Applied Biology. 2013; 3(11): 13-31.
Kavyani B, Alikhani MY, Arabestani MR, Moradkhani SH & Taheri M. The effect of garlic extract on the expression of genes elastase andexotoxin A in Pseudomonas aeruginosa. Tehran University Medical Journal. 2016; 74(8): 584-590.
Elgayyar M, Draughon FA, Golden DA & Mount JR. Antimicrobial activity of Essential oils from plants against selected pathogenic and saprophytic microorganisms. Journal of Food Protection. 2001; 64(7): 1019-1024.
Pirigharaghie T & Sadatshandiz A. The Inhibitory Effects of Silver Nanoparticles on Bap Gene Expression in Antibiotic-Resistant Acientobacter bumanni Isolates using Real-Time PCR. Scientific Journal of Ilam University of Medical Sciences. 2018; 26(4): 175-185.
Tong Zh & et al. Modified protocol for RNA extraction from different peach tissues suitable for gene isolation and Real-Time PCR analysis. Molecular Biotechnology. 2012; 50(3): 229-236.
Azizi O & et al. Molecular analysis and expression of bap gene in biofilm forming multi drug-resistant Acinetobacter baumannii. Report of Biochemistry Molecular Biology. 2016; 5: 68-74.
Liesje S, Bart D, Paul V, Benny F & Pyck G. The Antibacterial Activity of Biogenic Silver and Its Mode of Action. World Journal of Microbialogy and Biotechnology. 2011; 31(2): 113-189.
Flockton, TR, Schnorbus L, Araujo A, Adams J, Hammel M & Perez LJ. Inhibition of Pseudomonas aeruginosa Biofilm Formation with Surface Modified Polymeric Nanoparticles. Pathogens. 2019; 8(2): 55.
Yuan YG, Peng QL & Gurunathan S. Effects of silver nanoparticles on multiple
drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa from mastitis-infected goats: An alternative approach for antimicrobial therapy. International journal of molecular sciences. 2017; 18(3): 569.
Darabpour E, Doroodmand MM, Halabian R & Imani Fooladi AA. Sulfur-Functionalized Fullerene Nanoparticle as an Inhibitor and Eliminator Agent on Pseudomonas aeruginosa Biofilm and Expression of toxA Gene. Microbial Drug Resistance. 2019; 25(4): 594-602.
Singh R, Nadhe S, Wadhwani S, Shedbalkar U & Chopade B. A nanoparticles for control of biofilms of Acinetobacter species. Multidisciplinary Digital Publishing Institute. 2016; 9(5): 383.
Hendiani S, Abdiali A, Mohammadi P. Comparison of two methods for quantification of Acinetobacter baumannii biofilm formation. Biological Journal of Microorganism. 2014; 2(8): 51-56.
Palanisamy NK, Ferina N, Amirulhusni AN, Mohd-Zain Z, Hussaini J, Ping J & Durairaj R. Antibiofilm properties of chemically synthesized silver nanoparticles found against Pseudomonas aeruginosa. Journal of nanobiotechnology. 2014; 12(2): 2-7
Camporotondi D, Foglia M, Alvarez G, Mebert A, Diaz L, Coradin T & Desimone M. Antimicrobial properties of silica modified nanoparticles. Microbial Pathogens and Strategies for Combating Them. Science, Technology and Education; Microbiology Book Series. 2013: 283-290.
Yeo Y, Ito T, Bellas E, Highley CB, Marini R & Kohane DS. In situ cross-linkable hyaluronan hydrogels containing polymeric nanoparticles for preventing postsurgical adhesions. Annals of surgery. 2007; 245(5): 819.