تولید نانوذرات اورهآز به روش حلالزدایی و مقایسه برخی خواص آنها با اورهآز آزاد
الموضوعات :
راضیه سادات حسینی
1
,
سید محمد حسین رضویان
2
,
محمدعلی قاسمزاده
3
1 - کارشناسی ارشد، گروه زیست، دانشکده علوم پایه، واحد قم، دانشگاه آزاد اسلامی، قم، ایران
2 - استادیار، گروه زیست، دانشکده علوم پایه، واحد قم، دانشگاه آزاد اسلامی، قم، ایران
3 - دانشیار، گروه شیمی، دانشکده علوم پایه، واحد قم، دانشگاه آزاد اسلامی، قم، ایران
تاريخ الإرسال : 27 السبت , شوال, 1443
تاريخ التأكيد : 08 الجمعة , جمادى الأولى, 1444
تاريخ الإصدار : 01 الجمعة , شوال, 1444
الکلمات المفتاحية:
پایداری حرارتی,
نانو فناوری,
نانوذرات آنزیمی,
حلالزدایی,
اورهآز,
ملخص المقالة :
هدف: آنزیمها بهعنوان کاتالیزور طبیعی در واکنشهای بیولوژیکی عمل میکنند. اما دارای محدودیتهایی مانند عدم پایداری حرارتی، طول عمر کوتاه و عدم پایداری آنها در محیط آلی نیز میباشند. بنابراین، دانشمندان سعی کردهاند عملکرد آنزیمها را به روشهای مختلف ازجمله فناوری نانو بهبود ببخشند. لذا، هدف مطالعه حاضر تولید نانوذرات آنزیمی و ارزیابی برخی خواص آنها است، که به دلیل اهمیت اورهآز در پزشکی، کشاورزی و صنعت روی آن کار میشود.مواد و روشها: در این پژوهش، افزایش پایداری اورهآز براساس تولید نانوذرات آنزیمی با روش حلالزدایی انجام شد. نانوذرات سنتز شده با استفاده از طیفسنجی مادون قرمز تبدیل فوریه (FTIR)، طیفسنجی مرئی- فرابنفش (UV-Vis) و میکروسکوپ الکترونی روبشی (SEM) بررسی شد. همچنین فعالیتهای کلی و اختصاصی آنزیمهای آزاد و نانو در دمای °C۳۷ اندازهگیری و باهم مقایسه شد. بهعلاوه، آنزیمهای آزاد و نانو به مدت 10 دقیقه در دماهای بین ۳۰ تا °C۷۰ انکوبه و سپس فعالیت آنها اندازهگیری شد.یافتهها: نتایج حاصل از طیفسنجی و میکروسکوپ الکترونی روبشی، تشکیل نانوذرات اورهآز را تأیید کرد. همچنین نتایج تعیین فعالیت نشان داد که با تشکیل نانوذرات آنزیمی، علیرغم کاهش فعالیت کل آنزیم، فعالیت اختصاصی آن 46/43 درصد افزایش یافت.دمای مطلوب فعالیت کل اورهآز آزاد °C50 و نانوذرات اورهآز °C60 بود. پس از 10 دقیقه انکوباسیون در °C70، آنزیمهای آزاد و نانو به ترتیب 2 و 32 درصد فعالیت خود را حفظ کردند که نشاندهنده افزایش پایداری حرارتی در این روش است.نتیجهگیری: با تهیه نانوذرات آنزیمی می توان فعالیت و کاربرد آنها را در صنعت بهبود بخشید.
المصادر:
Robinson PK. Enzymes: principles and biotechnological applications. Essays in biochemistry. 2015; 59: 1.
Lizeng G & Xiyun Y. Nanozymes: an emerging field bridging nanotechnology and biology. Science China Life Sciences. 2016; 59(4): 400-2.
Khosravi A, Vossoughi M, Sharokhian S & Alemzadeh I (eds). Synthesis and Stability evaluation of HRP Single Enzyme Nanoparticles. Proceedings of International Conference on Nanostructures (ICNS4); 2012.
Cuesta SM, Rahman SA, Furnham N & Thornton JM. The classification and evolution of enzyme function. Biophysical journal. 2015; 109(6): 1082-6.
Sheldon RA & van Pelt S. Enzyme immobilisation in biocatalysis: why, what and how. Chemical Society Reviews. 2013; 42(15): 6223-35.
Kim J, Jia H & Wang P. Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnology advances. 2006; 24(3): 296-308.
Mohamad NR, Marzuki NHC, Buang NA, Huyop F & Wahab RA. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnology & Biotechnological Equipment. 2015; 29(2): 205-20.
Leong MK. Green Synthesis, Characterization of Copper (II) Oxide Nanoparticles and Their Photocatalytic Activity. UTAR; 2016.
Ghosh Chaudhuri R & Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chemical reviews. 2012; 112(4): 2373-433.
Olveira S, Forster SP & Seeger S. Nanocatalysis: academic discipline and industrial realities. Journal of Nanotechnology. 2014. https://doi.org/10.1155/2014/324089
Koo OM, Rubinstein I & Onyuksel H. Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine: nanotechnology, biology and medicine. 2005; 1(3): 193-212.
NH K. Synthesis Characterization and Application of Nickel Nanoparticles. Jamshoro-PAKISTAN.: Doctoral dissertation; 2013.
Kundu N, Yadav S & Pundir C. Preparation and characterization of glucose oxidase nanoparticles and their application in dissolved oxygen metric determination of serum glucose. Journal of Nanoscience and Nanotechnology. 2013; 13(3): 1710-6.
Jakhar S & Pundir C. Preparation, characterization and application of urease nanoparticles for construction of an improved potentiometric urea biosensor. Biosensors and Bioelectronics. 2018; 100: 242-50.
Kim J, Grate JW & Wang P. Nanobiocatalysis and its potential applications. Trends in biotechnology. 2008; 26(11): 639-46.
Yadav N, Narang J, Chhillar AK & Pundir CS. Chapter Six - Preparation, characterization, and application of enzyme nanoparticles. Methods in Enzymology. 2018; 609: 171-196.
Cuenot S, Frétigny C, Demoustier-Champagne S & Nysten B. Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Physical Review B. 2004; 69(16): 165410.
Karim MN. Modulating the NanoZyme activity for antibacterial and sensing applications. RMIT University; 2019.
Scheffel U, Rhodes BA, Natarajan T & Wagner HN. Albumin microspheres for study of the reticuloendothelial system. Journal of Nuclear Medicine. 1972; 13(7): 498-503.
Pundir CS. Enzyme nanoparticles: preparation, characterisation, properties and applications. William Andrew; 2015.
Sailaja AK, Amareshwar P & Chakravarty P. Different techniques used for the preparation of nanoparticles using natural polymers and their application. Int J Pharm Pharm Sci. 2011; 3(2): 45-50.
Liu G, Lin Y, Ostatná V & Wang J. Enzyme nanoparticles-based electronic biosensor. Chemical communications. 2005; 27: 3481-3.
Sharma S, Shrivastav A, Gupta N & Srivastava S (eds). Amperometric biosensor: increased sensitivity using enzyme nanoparticles. 2010 international conference on nanotechnology and biosensors, IPCBEE; 2011: Citeseer.
Chauhan N, Kumar A & Pundir C. Construction of an uricase nanoparticles modified Au electroe for amperometric determination of uric acid. Applied biochemistry and biotechnology. 2014; 174(4): 1683-94.
Kappaun K, Piovesan AR, Carlini CR & Ligabue-Braun R. Ureases: Historical aspects, catalytic, and non-catalytic properties–A review. Journal of advanced research. 2018; 13: 3-17.
Benini S, Rypniewski W, Wilson K, Ciurli S & Mangani S. The complex of Bacillus pasteurii urease with β-mercaptoethanol from X-ray data at 1.65-Å resolution. JBIC Journal of Biological Inorganic Chemistry. 1998; 3(3): 268-73.
Fong YH, Wong HC, Yuen MH, Lau PH, Chen YW & Wong K-B. Structure of UreG/UreF/UreH complex reveals how urease accessory proteins facilitate maturation of Helicobacter pylori urease. PLoS biology. 2013; 11(10): e1001678.
Khan M, Javed MM, Zahoor S & HAQ U. Kinetics and thermodynamic study of urease extracted from soybeans. Biologia. 2013; 59(1): 7-14.
Bzura J & Koncki R. A mechanized urease activity assay. Enzyme and microbial technology. 2019; 123: 1-7.
Boer JL & Hausinger RP. Klebsiella aerogenes UreF: identification of the UreG binding site and role in enhancing the fidelity of urease activation. Biochemistry. 2012; 51(11): 2298-308.
Chawla S, Rawal R & Pundir C. Preparation of cholesterol oxidase nanoparticles and their application in amperometric determination of cholesterol. Journal of nanoparticle research. 2013; 15(9): 1-9.
DeSantis G & Jones JB. Chemical modification of enzymes for enhanced functionality. Current Opinion in Biotechnology. 1999; 10(4): 324-30.
Kim J, Grate JW & Wang P. Nanostructures for enzyme stabilization. Chemical engineering science. 2006; 61(3): 1017-26.
Ding S, Cargill AA, Medintz IL & Claussen JC. Increasing the activity of immobilized enzymes with nanoparticle conjugation. Current opinion in biotechnology. 2015; 34:
242-50.
Ansari SA & Husain Q. Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnology advances. 2012; 30(3): 512-23.
Palmer T & Bonner PL. Enzymes: biochemistry, biotechnology, clinical chemistry. Elsevier; 2007.
Pithawala K, Mishra N & Bahadur A. Immobilization of urease in alginate, paraffin and lac. Journal of the Serbian Chemical Society. 2010; 75(2): 175-83.
Brady D & Jordaan J. Advances in enzyme immobilisation. Biotechnology letters. 2009; 31(11): 1639-50.
Mirza Babaei S. Stabilization of urease enzyme on chitosan/polyvinyl alcohol nanofiber prepared by electrospinning method. Master Thesis. University of Tehran, 2012. [in persian]
Shen Y, Zhang Y, Zhang X, Zhou X, Teng X, Yan M & et al. Horseradish peroxidase-immobilized magnetic mesoporous silica nanoparticles as a potential candidate to eliminate intracellular reactive oxygen species. 2015; 7(7): 2941-50.
Men D, Zhang T-T, Hou L-W, Zhou J, Zhang Z-P, Shi Y-Y & et al. Self-assembly of ferritin nanoparticles into an enzyme nanocomposite with tunable size for ultrasensitive immunoassay. Acs Nano. 2015; 9(11): 10852-60.
_||_
Robinson PK. Enzymes: principles and biotechnological applications. Essays in biochemistry. 2015; 59: 1.
Lizeng G & Xiyun Y. Nanozymes: an emerging field bridging nanotechnology and biology. Science China Life Sciences. 2016; 59(4): 400-2.
Khosravi A, Vossoughi M, Sharokhian S & Alemzadeh I (eds). Synthesis and Stability evaluation of HRP Single Enzyme Nanoparticles. Proceedings of International Conference on Nanostructures (ICNS4); 2012.
Cuesta SM, Rahman SA, Furnham N & Thornton JM. The classification and evolution of enzyme function. Biophysical journal. 2015; 109(6): 1082-6.
Sheldon RA & van Pelt S. Enzyme immobilisation in biocatalysis: why, what and how. Chemical Society Reviews. 2013; 42(15): 6223-35.
Kim J, Jia H & Wang P. Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnology advances. 2006; 24(3): 296-308.
Mohamad NR, Marzuki NHC, Buang NA, Huyop F & Wahab RA. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnology & Biotechnological Equipment. 2015; 29(2): 205-20.
Leong MK. Green Synthesis, Characterization of Copper (II) Oxide Nanoparticles and Their Photocatalytic Activity. UTAR; 2016.
Ghosh Chaudhuri R & Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chemical reviews. 2012; 112(4): 2373-433.
Olveira S, Forster SP & Seeger S. Nanocatalysis: academic discipline and industrial realities. Journal of Nanotechnology. 2014. https://doi.org/10.1155/2014/324089
Koo OM, Rubinstein I & Onyuksel H. Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine: nanotechnology, biology and medicine. 2005; 1(3): 193-212.
NH K. Synthesis Characterization and Application of Nickel Nanoparticles. Jamshoro-PAKISTAN.: Doctoral dissertation; 2013.
Kundu N, Yadav S & Pundir C. Preparation and characterization of glucose oxidase nanoparticles and their application in dissolved oxygen metric determination of serum glucose. Journal of Nanoscience and Nanotechnology. 2013; 13(3): 1710-6.
Jakhar S & Pundir C. Preparation, characterization and application of urease nanoparticles for construction of an improved potentiometric urea biosensor. Biosensors and Bioelectronics. 2018; 100: 242-50.
Kim J, Grate JW & Wang P. Nanobiocatalysis and its potential applications. Trends in biotechnology. 2008; 26(11): 639-46.
Yadav N, Narang J, Chhillar AK & Pundir CS. Chapter Six - Preparation, characterization, and application of enzyme nanoparticles. Methods in Enzymology. 2018; 609: 171-196.
Cuenot S, Frétigny C, Demoustier-Champagne S & Nysten B. Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Physical Review B. 2004; 69(16): 165410.
Karim MN. Modulating the NanoZyme activity for antibacterial and sensing applications. RMIT University; 2019.
Scheffel U, Rhodes BA, Natarajan T & Wagner HN. Albumin microspheres for study of the reticuloendothelial system. Journal of Nuclear Medicine. 1972; 13(7): 498-503.
Pundir CS. Enzyme nanoparticles: preparation, characterisation, properties and applications. William Andrew; 2015.
Sailaja AK, Amareshwar P & Chakravarty P. Different techniques used for the preparation of nanoparticles using natural polymers and their application. Int J Pharm Pharm Sci. 2011; 3(2): 45-50.
Liu G, Lin Y, Ostatná V & Wang J. Enzyme nanoparticles-based electronic biosensor. Chemical communications. 2005; 27: 3481-3.
Sharma S, Shrivastav A, Gupta N & Srivastava S (eds). Amperometric biosensor: increased sensitivity using enzyme nanoparticles. 2010 international conference on nanotechnology and biosensors, IPCBEE; 2011: Citeseer.
Chauhan N, Kumar A & Pundir C. Construction of an uricase nanoparticles modified Au electroe for amperometric determination of uric acid. Applied biochemistry and biotechnology. 2014; 174(4): 1683-94.
Kappaun K, Piovesan AR, Carlini CR & Ligabue-Braun R. Ureases: Historical aspects, catalytic, and non-catalytic properties–A review. Journal of advanced research. 2018; 13: 3-17.
Benini S, Rypniewski W, Wilson K, Ciurli S & Mangani S. The complex of Bacillus pasteurii urease with β-mercaptoethanol from X-ray data at 1.65-Å resolution. JBIC Journal of Biological Inorganic Chemistry. 1998; 3(3): 268-73.
Fong YH, Wong HC, Yuen MH, Lau PH, Chen YW & Wong K-B. Structure of UreG/UreF/UreH complex reveals how urease accessory proteins facilitate maturation of Helicobacter pylori urease. PLoS biology. 2013; 11(10): e1001678.
Khan M, Javed MM, Zahoor S & HAQ U. Kinetics and thermodynamic study of urease extracted from soybeans. Biologia. 2013; 59(1): 7-14.
Bzura J & Koncki R. A mechanized urease activity assay. Enzyme and microbial technology. 2019; 123: 1-7.
Boer JL & Hausinger RP. Klebsiella aerogenes UreF: identification of the UreG binding site and role in enhancing the fidelity of urease activation. Biochemistry. 2012; 51(11): 2298-308.
Chawla S, Rawal R & Pundir C. Preparation of cholesterol oxidase nanoparticles and their application in amperometric determination of cholesterol. Journal of nanoparticle research. 2013; 15(9): 1-9.
DeSantis G & Jones JB. Chemical modification of enzymes for enhanced functionality. Current Opinion in Biotechnology. 1999; 10(4): 324-30.
Kim J, Grate JW & Wang P. Nanostructures for enzyme stabilization. Chemical engineering science. 2006; 61(3): 1017-26.
Ding S, Cargill AA, Medintz IL & Claussen JC. Increasing the activity of immobilized enzymes with nanoparticle conjugation. Current opinion in biotechnology. 2015; 34:
242-50.
Ansari SA & Husain Q. Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnology advances. 2012; 30(3): 512-23.
Palmer T & Bonner PL. Enzymes: biochemistry, biotechnology, clinical chemistry. Elsevier; 2007.
Pithawala K, Mishra N & Bahadur A. Immobilization of urease in alginate, paraffin and lac. Journal of the Serbian Chemical Society. 2010; 75(2): 175-83.
Brady D & Jordaan J. Advances in enzyme immobilisation. Biotechnology letters. 2009; 31(11): 1639-50.
Mirza Babaei S. Stabilization of urease enzyme on chitosan/polyvinyl alcohol nanofiber prepared by electrospinning method. Master Thesis. University of Tehran, 2012. [in persian]
Shen Y, Zhang Y, Zhang X, Zhou X, Teng X, Yan M & et al. Horseradish peroxidase-immobilized magnetic mesoporous silica nanoparticles as a potential candidate to eliminate intracellular reactive oxygen species. 2015; 7(7): 2941-50.
Men D, Zhang T-T, Hou L-W, Zhou J, Zhang Z-P, Shi Y-Y & et al. Self-assembly of ferritin nanoparticles into an enzyme nanocomposite with tunable size for ultrasensitive immunoassay. Acs Nano. 2015; 9(11): 10852-60.