رویکردهای همسایگی جدید در الگوریتم ممتیک برای یافتن نوع مشتری
الموضوعات :حامد شرافت مولا 1 , هادی یعقوبیان 2 , راضیه ملک حسینی 3 , کرم الله باقری فرد 4
1 - گروه مهندسی کامپیوتر، واحد یاسوج، دانشگاه آزاد اسلامی، یاسوج، ایران
2 - گروه مهندسی کامپیوتر، واحد یاسوج، دانشگاه آزاد اسلامی، یاسوج، ایران
3 - گروه مهندسی کامپیوتر، واحد یاسوج، دانشگاه آزاد اسلامی، یاسوج، ایران
4 - گروه مهندسی کامپیوتر ، واحد یاسوج، دانشگاه آزاد اسلامی، یاسوج، ایران
الکلمات المفتاحية: مدیریت درآمد, الگوریتمهای فراابتکاری, الگوریتم ژنتیک, الگوریتم ممتیک,
ملخص المقالة :
سیستمهای «مدیریت سود» امروزه بهصورت فراوان در صنایع مختلفی استفاده میشوند. یکی از پایههای اصلی مدیریت سود، «برآورد تقاضا» است که بر اساس آن تقاضای محصولات و خدمات پیشبینی میشود. شناخت مشتریان و علایق آنها زیربنای برآورد تقاضاست و این شناخت با حل مسئله «کشف نوع مشتری» بهدست میآید. به تازگی این مسئله با استفاده از روش فراابتکاری «ژنتیک» حلشده¬است و در این تحقیق با استفاده از رویکردهایی دیگر برای یافتن همسایگی، این مسئله را با روش فراابتکاری «ممتیک» حل خواهیم¬کرد. برای ارزیابی تحقیق خود، از دادههای واقعی پنج هتل استفاده خواهیم¬کرد و در ادامه نشان میدهیم که روش پیشنهادی درمجموع با 10.5 درصد تعداد نسل کمتر نسبت به روش «ژنتیک» اولین راهحل قابلقبول مسئله را ارائه میدهد.
[1] K. T. Talluri and G. J. Van Ryzin, The Theory and Practice of Revenue Management, vol. 68. Boston, MA: Springer US, 2004.
[2] P. Liu and S. Smith, “Estimating unconstrained hotel demand based on censored booking data,” Journal of Revenue and …, July 01, 2002. http://link.springer.com/10.1057/palgrave.rpm.5170015 (accessed February 21, 2018).
[3] A. Nikseresht and K. Ziarati, “Estimating True Demand in Airline’s Revenue Management Systems using Observed Sales,” Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 7, pp. 361–369, 2017, doi: 10.14569/ijacsa.2017.080748.
[4] C. Y. Goh, C. Yan, and P. Jaillet, “Estimating Primary Demand in Bike-sharing Systems,” SSRN Electron. J., Jan. 2019, doi: 10.2139/ssrn.3311371.
[5] J. P. Newman, M. E. Ferguson, L. A. Garrow, and T. L. Jacobs, “Estimation of Choice-Based Models Using Sales Data from a Single Firm,” Manuf. Serv. Oper. Manag., vol. 16, no. 2, pp. 184–197, May 2014, doi: 10.1287/msom.2014.0475.
[6] A. Aouad, V. F. Farias, and R. Levi, “Assortment Optimization under Consider-then-Rank Choice Models,” SSRN Electron. J., Jun. 2015, doi: 10.2139/ssrn.2618823.
[7] A. Aouad, V. Farias, R. Levi, and D. Segev, “The approximability of assortment optimization under ranking preferences,” Oper. Res., vol. 66, no. 6, pp. 1661–1669, Nov. 2018, doi: 10.1287/opre.2018.1754.
[8] D. Bertsimas and V. V Mišic, “Data-driven assortment optimization,” Manage. Sci., vol. 1, pp. 1–35, 2015.
[9] S. Jagabathula, “Assortment Optimization Under General Choice,” Ssrn, pp. 1–51, 2014, doi: 10.2139/ssrn.2512831.
[10] S. Jagabathula and P. Rusmevichientong, “A Nonparametric Joint Assortment and Price Choice Model,” Ssrn, no. July, 2013, doi: 10.2139/ssrn.2286923.
[11] G. Gallego, H. Topaloglu, and others, Revenue management and pricing analytics, vol. 209. Springer, 2019.
[12] G. Bitran and R. Caldentey, “An overview of pricing models for revenue management,” Manuf. Serv. Oper. Manag., vol. 5, no. 3, pp. 203–229, 2003.
[13] S. Kunnumkal, “Randomization Approaches for Network Revenue Management with Customer Choice Behavior,” Prod. Oper. Manag., vol. 23, no. 9, pp. 1617–1633, Sep. 2014, doi: 10.1111/poms.12164.
[14] L. Chen and T. Homem-de-Mello, “Mathematical programming models for revenue management under customer choice,” Eur. J. Oper. Res., vol. 203, no. 2, pp. 294–305, Jun. 2010, doi: 10.1016/J.EJOR.2009.07.029.
[15] G. Vulcano, G. van Ryzin, and R. Ratliff, “Estimating Primary Demand for Substitutable Products from Sales Transaction Data,” Ssrn, no. August 2015, 2011, doi: 10.2139/ssrn.1923711.
[16] G. van Ryzin and G. Vulcano, “A Market Discovery Algorithm to Estimate a General Class of Nonparametric Choice Models,” Manage. Sci., vol. 61, no. 2, pp. 281–300, 2015, doi: 10.1287/mnsc.2014.2040.
[17] G. van Ryzin and G. Vulcano, “Technical Note—An Expectation-Maximization Method to Estimate a Rank-Based Choice Model of Demand,” Oper. Res., vol. 65, no. 2, pp. 396–407, 2017, doi: 10.1287/opre.2016.1559.
[18] S. Jagabathula, D. Mitrofanov, and G. Vulcano, “Inferring Consideration Sets from Sales Transaction Data,” SSRN Electron. J., 2019, doi: 10.2139/ssrn.3410019.
[19] M. HajMirzaei, K. Ziarati, and A. Nikseresht, “Discovering customer types using sales transactions and product availability data of 5 hotel datasets with genetic algorithm,” J. Revenue Pricing Manag., 2020, doi: 10.1057/s41272-020-00245-3.
[20] S. Jagabathula and G. Vulcano, “A Partial-order-based Model to Estimate Individual Preferences Using Panel Data,” SSRN Electron. J., no. April, 2017, doi: 10.2139/ssrn.2560994.
[21] H. Lee and Y. Eun, “Discovering heterogeneous consumer groups from sales transaction data,” Eur. J. Oper. Res., vol. 280, no. 1, pp. 338–350, Jan. 2020, doi: 10.1016/J.EJOR.2019.05.043.
[22] M. HajMirzaei, K. Ziarati, and A. Nikseresht, “A customer type discovery algorithm in hotel revenue management systems,” J. Revenue Pricing Manag., 2021, doi: 10.1057/s41272-020-00273-z.
[23] T. Bodea, M. Ferguson, and L. Garrow, “Data Set —Choice-Based Revenue Management: Data from a Major Hotel Chain ,” Manuf. Serv. Oper. Manag., vol. 11, no. 2, pp. 356–361, 2008, doi: 10.1287/msom.1080.0231.
[24] L. Davis, Handbook of genetic algorithms. 1996.
[25] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67–82, 1997.
[26] J. C. Culberson, “On the futility of blind search: An algorithmic view of ‘no free lunch,’” Evol. Comput., vol. 6, no. 2, pp. 109–127, 1998.
[27] D. E. Goldberg and S. Voessner, “Optimizing global-local search hybrids.,” in GECCO, 1999, vol. 99, pp. 220–228.
[28] P. Moscato, “On evolution, search, optimization, GAs and martial arts: toward memetic algorithms. California Inst. Technol., Pasadena,” 1989.
[29] N. Krasnogor and J. Smith, “A tutorial for competent memetic algorithms: model, taxonomy, and design issues,” IEEE Trans. Evol. Comput., vol. 9, no. 5, pp. 474–488, 2005.
[30] Wang, C. (2022). Efficient customer segmentation in digital marketing using deep learning with swarm intelligence approach. Information Processing & Management, 59(6), 103085.
[31] Narayana, V. L., Sirisha, S., Divya, G., Pooja, N. L. S., & Nouf, S. A. (2022, March). Mall customer segmentation using machine learning. In 2022 International Conference on Electronics and Renewable Systems (ICEARS) (pp. 1280-1288). IEEE.
[32] Griva, A., Zampou, E., Stavrou, V., Papakiriakopoulos, D., & Doukidis, G. (2023). A two-stage business analytics approach to perform behavioural and geographic customer segmentation using e-commerce delivery data. Journal of Decision Systems, 1-29.