Antibacterial activity of Butia odorata extracts against pathogenic bacteria
الموضوعات :Darla Maia 1 , Bianca Aranha 2 , Fabio Chaves 3 , Wladimir Silva 4
1 - Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Brazil
2 - Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Brazil
3 - Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Brazil
4 - Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Brazil | Núcleo de Biotecnologia, Brazil
الکلمات المفتاحية: Antibacterial, chemical characterization, phytosterols, foodborne pathogens, synthetic preservatives,
ملخص المقالة :
Currently, synthetic preservatives are added to foods to increase their microbiological safety, but the demand for foods free of these agents is on the rise. Butia odorata Barb. Rodr. is a tree native to southern South America, with fruits rich in bioactive compounds. In this investigation, hexane (BHE) and methanol (BME) extracts of B. odorata fruit were evaluated for their antibacterial activity against three Gram-positive (Listeria monocytogenes, Staphylococcus aureus, and Bacillus cereus) and three Gram-negative bacteria (Salmonella Typhimurium, Escherichia coli O157:H7, and Pseudomonas aeruginosa) by the agar diffusion method. Antibacterial activity of both B. odorata extracts was confirmed, with BHE showing inhibition zones significantly higher than BME, and with higher activity against Gram-negative bacteria. E. coli O157:H7 was the most sensitive microorganism, being inhibited at a minimum bactericidal concentration (MBC) of 3 mg.mL-1. Of the Gram-positive bacteria, S. aureus was the most susceptible (MBC 11 mg.mL-1). γ-sitosterol was the major compound, constituting 22% of the total composition.
Basile, A., Ferrara, L., Del Pezzo, M., Mele, G., Sorbo, S., Bassi, P., Montesano, D., 2005. Antibacterial and antioxidant activities of ethanol extract from Paullinia cupana Mart. J. Ethnopharmacol. 102(1), 32-36.
Belda-Galbis, C.M., Jimenez-Carreton, A., Pina-Perez, M.C., Martínez, A., Rodrigo, D., 2015. Antimicrobial activity of açaí against Listeria innocua. Food Control 53, 212-216.
Bennett, R.W., 2005. Staphylococcal enterotoxin and its rapid identification in foods by enzyme-linked immunosorbent assay-based methodology. J. Food Protect. 68(6), 1264-1270.
Beskow, G.T., Hoffmann, J.F., Teixeira, A.M., Fachinello, J.C., Chaves, F.C., Rombaldi, C.V., 2015. Bioactive and yield potential of jelly palms (Butia odorata Barb. Rodr.). Food Chem. 172, 699-704.
Chorianopoulos, N., Kalpoutzakis, E., Aligiannis, N., Mitaku, S., Nychas, G.-J., Haroutounian, S.A., 2004. Essential oils of Satureja, Origanum, and Thymus species: chemical composition and antibacterial activities against foodborne pathogens. J. Agric. Food Chem. 52(26), 8261-8267.
Dannenberg, G.S., Funck, G.D., Mattei, F.J., Silva, W.P., Fiorentini, A.M., 2016. Antimicrobial and antioxidant activity of essential oil from pink pepper tree (Schinus terebinthifolius Raddi) in vitro and in cheese experimentally contaminated with Listeria monocytogenes. Innov. Food Sci. Emerg. Technol. 36, 120-127.
Devaraj, S., Jialal, I., 2006. The role of dietary supplementation with plant sterols and stanols in the prevention of cardiovascular disease. Nutr. Rev. 64(7), 348-54.
Dziedzic, K., Szwengiel, A., Górecka, D., Rudzinska, M., Korczak, J., Walkowiak, J., 2016. The effect of processing on the phytosterol content in buckwheat groats and by-products. J. Cereal Sci. 69, 25-31.
EFSA (European Food Safety Authority)/ECDC (European Centre for Disease Prevention and Control), 2015. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2014. EFSA J. 13, 191 pp.
Faleiro, M.L., 2011. The Mode of Antibacterial Action of Essential Oils, in: Méndez-Vilas, A. (Ed.), Science Against Microbial Pathogens: Communicating Current Research and Technological Advances. Formatex, Badajoz, pp. 1143-1156.
Farrokh, C., Jordan, K., Auvray, F., Glass, K., Oppegaard, H., Raynaud, S., Thevenot, D., Condron, R., Reu, K.D., Govaris, A., Heggum, K., Heyndrickx, M., Hummerjohann, J., Lindsay, D., Miszczycha, S., Moussiegt, S., Verstraete, K., Cerf, O., 2013. Review of Shiga-toxin-producing Escherichia coli (STEC) and their significance in dairy production. Int. J. Food Microbiol. 162(2), 190-212.
Gutiérrez, D., Delgado, S., Vázquez-Sánchez, D., Martínez, B., Cabo, M.L., Rodríguez, A., Herrera, J.J., García, P., 2012. Incidence of Staphylococcus aureusand analysis of associated bacterial communities on food industry surfaces. Appl. Environ. Microbiol. 78 (24), 8547-8554.
Herrera, J.J.R., Cabo, M.L., González, A., Pazos, I., Pastoriza, L., 2007. Adhesion and detachment kinetics of several strains of Staphylococcus aureus subsp. aureus under three different experimental conditions. Food Microbiol.24(6), 585-591.
Hoffmann, J.F., Barbieri, R.L., Rombaldi, C.V., Chaves, F.C., 2014. Butia spp. (Arecaceae): An overview. Sci. Hortic. 179, 122-131.
Liao, C-D., Peng, G-J., Ting, Y., Chang, M-H., Tseng, S-H., Kao, Y-M., Lin, K-F., Chiang, Y-M., Yeh, M-K., Cheng, H-F., 2017. Using phytosterol as a target compound to identify edible animal fats adulterated with cooked oil. Food Control 79, 10-16.
Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., Fernie, A.R., 2006. Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat. Protoc. 1(1), 387-396.
Loizzo, M.R., Tundis, R., Chandrika, U.G., Abeysekera, A.M., Menichini, F., Frega, N.G., 2010. Antioxidant and antibacterial activities on foodborne pathogens of Artocarpus heterophyllus Lam. (Moraceae) leaves extracts. J. Food Sci. 75(5), M291-M295.
Lorenzi, H., Noblick, L., Kahn, F., Ferreira, E., 2010. Flora Brasileira: Arecaceae (Palmeiras), First Ed. Instituto Plantarum, Nova Odessa, Brazil.
Marangoni, F., Poli, A., 2010. Phytosterols and cardiovascular health. Pharmacol. Res. 61(3), 193-199.
Luo, H., Cai, Y., Peng, Z., Liu, T., Yang, S., 2014. Chemical composition and in vitro evaluation of the cytotoxic and antioxidant activities of supercritical carbon dioxide extracts of pitaya (dragon fruit) peel. Chem. Cent. J. 8(1), 1-7.
Marques, J.L., Volcão, L.M., Funck, G.D., Kroning, I.S., Silva, W.P., Fiorentini, A.M., Ribeiro, G.A., 2015. Antimicrobial activity of essential oils of Origanum vulgare L. and Origanum majorana L. against Staphylococcus aureus isolated from poultry meat. Ind. Crops Prod. 77, 444-450.
Medina, A.L., Haas, L.I.R., Chaves, F.C., Salvador, M., Zambiazi, R.C., Silva, W.P., Nora, L., Rombaldi, C.V., 2011. Araçá (Psidium cattleianum Sabine) fruit extracts with antioxidant and antimicrobial activities and antiproliferative effect on human cancer cells. Food Chem. 128, 916-922.
Paunović, S.M., Mašković, P., Nikolić, M., Miletić, R., 2017. Bioactive compounds and antimicrobial activity of black currant (Ribes nigrum L.) berries and leaves extract obtained by different soil management system. Sci. Hortic. 222, 69-75.
Puupponen-Pimia, R., Nohynek, L., Meier, C., Kahkonen, M., Heinonen, M., Hopia, A., Oksman-Caldentey, K.M., 2001. Antimicrobial properties of phenolic compounds from berries. J. Appl. Microbiol. 90(4), 494-507.
Rangel, J.M., Sparling, P.H., Crowe, C., Griffin, P.M., Swerdlow, D.L., 2005. Epidemiology of Escherichia coliO157:H7 outbreaks, United States, 1982-2002. Emerg. Infect. Dis. 11(4), 603-609.
Scallan, E., Hoekstra, R.M., Angulo, F.J., Tauxe, R.V., Widdowson, M., Roy, S.L., Jones, J.L., Griffin, P.M., 2011. Foodborne illness acquired in the United States-major pathogens. Emerg. Infect. Dis. 17(1), 7-15.
Schauss, A.G., Wu, X., Prior, R.L., Ou, B., Patel, D., Huang, D., Kabablck, J.P., 2006. Phytochemical and nutrient composition of the freeze-dried Amazonian palm berry, Euterpe oleraceae Mart. (Acai). J. Agric. Food Chem. 54, 8598-8603.
Shan, B., Cai, Y.Z., Brooks, J.D., Corke, H., 2007. The in vitro antibacterial activity of dietary spice and medicinal herb extracts. Int. J. Food Microbiol. 117, 112-119.
Shen, X., Sun, X., Xie, Q., Liu, H., Zhao, Y., Pan, Y., Hwang, C., Wu, V.C.H., 2014. Antimicrobial effect of blueberry (Vaccinium corymbosum L.) extracts against the growth of Listeria monocytogenes and Salmonella enteritidis. Food Control 35, 159-165.
Silveira, C.S., Pessanha, C.M., Lourenço, M.C.S., Neves Júnior, I., Menezes, F.S., Kaplan, M.A.C., 2005. Antimicrobial activity of Syagrus oleracea and Mauritia vinifera fruits. Rev. Bras. Farmacog. 15(2), 143-148.
Singh, J.P., Kaur, A., Singh, N., Nim, L., Shevkani, K., Kaur, H., Arora, D.S., 2016. In vitro antioxidant and antimicrobial properties of jambolan (Syzygium cumini) fruit polyphenols. LWT-Food Sci. Technol., 65, 1025-1030.
Tajkarimi, M.M., Ibrahim, S.A., Cliver, D.O., 2010. Antimicrobial herb and spice compounds in food. Food Control 21, 1199-1218.
Tortora, G.J., Funke, B.R., Case, C.L., 2012. Microbiologia, 10th Ed. Artmed, Porto Alegre, Brazil.
Weerakkody, N.S., Caffin, N., Turner, M.S., Dykes, G.A., 2010. In vitro antimicrobial activity of less-utilized spice and herb extracts against selected food-borne bacteria. Food Control, 21, 1408-1414.
http://www.who.int. WHO (World Health Organization). WHO estimates of the global burden of foodborne diseases, 2015.