Flavonol glycosides with insecticidal activity from methanol extract of Annona mucosa leave
الموضوعات :Albert Mulianga Makenzi 1 , Lawrence Onyango Arot Manguro 2 , Philip Okinda Owuor 3 , Sylvia Awino Opiyo 4
1 - Chemistry Department, Maseno University, P. O. Box 333-40105 Maseno, Kenya
2 - Chemistry Department, Maseno University, P. O. Box 333-40105 Maseno, Kenya
3 - Chemistry Department, Maseno University, P. O. Box 333-40105 Maseno, Kenya
4 - Chemistry Department, Murang’a University, P.O. Box 75-10200, Muranga, Kenya
الکلمات المفتاحية: <i>Annona mucosa</i>, <i>Sitophilus zeamais</i>, flavonol gycosides, insecticidal activities, <i>Prostephanus truncatus</i>,
ملخص المقالة :
Three flavonoids, quercetin 3-O-β-D-glucoside (1), quercetin 3-O-α-D-arabinoside (2) and kaempferol 3-O-β-D-galactoside (3) were isolated from the methanol leaf extract of Annona mucosa. Their structures were determined using physical and spectroscopic methods. compound 1 showed the highest activity against both S. zeamais and P. truncatus with LC50 values of 20.891 μg/ml and 22.241μg/ml, respectively though lower than the activity of deltamethrine a commercial insecticide used as a positive control. Compounds 2 and 3 gave moderate toxicities with LC50 values of 21.745 μg/ml and 24.926 μg/ml for compound 2 and 29.260μg/ml and 24.241μg/ml for compound 3 when tested against S. zeamais and P. truncates, respectively. compounds 1, 2 and 3 were also tested for anti-feedant activities against S. zeamais and P. truncatus and they exhibited interesting results. The activities were concentration dependent, increasing with increase in concentration. Quercetin 3-O-β-D-glucoside (1) showed the highest activities with AFI50 values 14.856 µg/ml and 16.79 µg/ml against S. zeamais and P. truncatus respectively (Figure 3). This actvity was close to but lower than the activity of azadirachtin a commercial antifeedant that had an activity of AFI50 of 12.146 µg/ml and 12.432 µg/ml against S. zeamais and P. truncates, respectively. Compounds 2 and 3 also exhibited relatively high antifeedant activities with values of AFI50 values 17.257µg/ml and AFI50 19.965µg/ml for compound 2 while values of AFI50 21.599 µg/ml and 20.149 µg/ml were obtained for compound 3 respectively, when tested against S. zeamais and P. truncatus respectively.
Abbot, W.S., 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265-267.
Akanksha, G., Garud, N., Tailang, M., 2015. Annona squamosa: A review on its larvicidal, oviposition deterrent and insect repellent potency. World J. Pharm. Res. 4, 452-463.
Arivoli, S., Tennyson, S., 2013. Antifeedant activity, developmental indices and morphogenetic variations of plant extracts against Spodoptera litura (Fab) (Lepidoptera: Noctuidae). J. Entomol. Zool. Studies 1, 87-96.
Ferreira, M.G.R., Santos, M.R.A., Silva, E.O., Gonçalves, E.P., Alves, E.U., Bruno, R.L.A., 2010. Emergência e crescimento inicial de plântulas de biribá (Rollinia mucosa (Jacq.) Baill) (Annonaceae) em diferentes substrates. Semin. Ciênc. Agrár. 31, 373-380.
Finney, D.J. 1971. Statistical Method in Biological Assay. Charles Griffin & Co., London, U.K.
de Lima, J.P.S., Pinheiro, M.L.B., Santos, A.M.G., Pereira, J.L.S., Santos, D.M.F., Barison, A., Silva-Jardim, I., Costa, E.V., 2012. In vitro antileishmanial and cytotoxic activities of Annona mucosa (Annonaceae). Rev. Virt. Quim. 4, 692-702.
Mabry, T.J., Markham, K.R., Thomas, M.B., 1970. The Systematic Identification of Flavonoids. Springer, Berlin, pp. 150-152.
Markham, K.R., 1982. Techniques of Flavonoid Identification. London, Academic Press, p. 113.
Massarolli, A., Pereira, B.M.J., Foerster, A.L., 2016. Annona mucosa Jacq. (Annonaceae): A promising phytoinsecticide for the control of Chrysodeixis includens (Walker) (Lepidoptera: Noctuidae). J. Entomol.13, 132-140.
Medeiros, J., Lima, E., Medeiros, H., 1994. Relationships between the structure of flavonoids and antifeedant activity against Mythimna unipuncta (Haworth (Lepidoptera: Noctuidae). Life Mar. Sci. 12, 63-66.
Moghadamtousi, S.Z., Fadaeinasab, M., Nikzad, S., Mohan, G., Ali, H.M., Kadir, H.A., 2015. Annona muricata (Annonaceae): A review of its traditional uses, isolated acetogenins and biological activities. Int. J. Mol. Sci. 16, 15625-15658.
Mohadjerani, M., Asadollahi, S., 2019. Veronica crista-galli Steven and Veronica persica Poir. as anticancer and antioxidant plants in-vitro. Trends Phytochem. Res. 3(1), 61-66.
Mohammadhosseini, M., 2017.The ethnobotanical, phytochemical and pharmacological properties and medicinal applications of essential oils and extracts of different Ziziphora species.
Ind. Crop Prod. 105, 164-192.
Mohammadhosseini, M., Venditti, A., Sarker, S.D., Nahar, L., Akbarzadeh, A., 2019. The genus Ferula: Ethnobotany, phytochemistry and bioactivities - A review. Ind. Crop Prod. 129 (2019) 350-394.
Mororó, G.T., Ferreira, J.R.O., Alves, M.M.M., Monção, N.B.N., de Carvalho-Gonçalves, L.C.T., Citó, A.M.G.L, Ferreira, P.M.P., Carvalho, F.A.A., Gonçalves, J.C.R., 2018. Study of the antileukemic activity of Mimosa caesalpiniifolia Benth. ethanolic extract and fractions. Trends Phytochem. Res. 2(3) 127-134.
Morton, J., 1987. Biriba. In: Fruits of Warm Climates. Morton, J.F., Miami, F.L., pp. 88-90.
Nawwar, M., Ayoub, N., Hussein, S., Hashim, A., El-Sharawy, R., Wende, K., Harms, M., Lindequist, U., 2012. Flavonol triglycoside and investigation of the antioxidant and cell stimulating activities of Annona muricata linn. Arch. Pharmacol. Res.35, 761-767.
Nascimento, M.S., Santana, A.L.B.D., Maranhão, C.A., Oliveira L.S., Bieb, L., 2013. Phenolic extractives and natural resistance of wood. Degradation-Life. Sci. 1, 349-370.
Padvamati, N., Reddy, A.R., 1999. Flavonol biosynthetic pathway and cereal defence response. An emerging trend in crop biotechnology. J. Plant. Biochem. Biotec.8, 15-20.
Pathak, K., Zaman, K., 2013. An overview on medicinally important plant-Annona reticulata Linn. Int. J. Pharm. Pharm. Res. 5, 299-30.
Ramesha, B.T., Gertsch, J., Ravikanth, G., Priti, V., Ganeshaiah, K.N., Shahnker, R.U., 2011. Biodiversity and chemodiversity: future perspectives in bioprospecting. Curr. Drug Targets12, 1515-1530.
Ribeiro, L.P., Vendramim, J.D., Bicalho, K.U., Andrade, M.S., Fernandes J.B., Moral, R.A., Demétrio, C.G.B., 2013. Annona mucosa Jacq. (Annonaceae): A promising source of bioactive compounds against Sitophilus zeamais Mots. (Coleoptera: Curculionidae). J. Stored. Prod. Res.55,6-14.
Ribeiro, L.P., Vendramim, J.D., Gonçalves, G.L.P., Ansante, T.F., Gloria, E.M., Lopes, J.C., Mello-Silva, R., Fernandes, J.B., 2016. Searching for promising sources of grain protectors in extracts from Neotropical Annonaceae. Bol. Latino. Amer. Caribe. Plantas. Medicinales. Aromát.15, 215-232.
Senejoux, F., Demougeot, C., Kerram, P., Aisa, H.A., Berthelot, A., Bevalot, F., Girard-Thernier, C., 2012. Bioassay-guided isolation of vasorelaxant compounds from Ziziphora clinopodioides Lam. (Lamiaceae). Fitoterapia 83, 377-382.
Singh, R.P., Pant, N.C., 1980. Hymenocallislittoralis Salisb as antifeedant to desert locust, Schistoceragregaria Forsk. Indian J. Entomol. 42, 460-464.
Tapondjou, A.l., Adler, C., Fontem, D.A., Bouda, H., Reichmuth, C., 2005. Bioactivies of cymol and essential oils of Cupressus sempervirens and Eucalyptus saligna against Sitophilus zeamais Motchusky and Trobolium confusum du Val. J. Stored. Prod. Res. 41, 91-92.
Wink, M., 2003. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64, 3-9.