The anti-inflammatory and antitumor potential of Cryptocarya concinna Hance and its phytoconsituents
الموضوعات :Christian Bailly 1 , Gerard Vergoten 2
1 - OncoWitan, Consulting Scientific Office, 59290, Lille (Wasquehal), France
2 - University of Lille, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, 3 rue du Professeur Laguesse, BP-83, F59006, Lille, France
الکلمات المفتاحية: Cryptocaryone, Cryptoconcatone, anticancer, <i>Cryptocarya concinna</i>, natural products, Anti-inflammatory,
ملخص المقالة :
The tree Cryptocarya concinna Hance is largely distributed in southeast Asia and essentially used for its robust wood. Alcoholic extracts made from the leaves or roots of the plant have revealed anti-inflammatory and anticancer properties. The DNA-damaging dihydrochalcone derivative cryptocaryone accounts for the anti-proliferative and pro-apoptotic activities observed with the extracts. Other bioactive products have been isolated, including α-pyrone derivatives such as cryptoconcatones A-L and flavonoids such as cryptoconones A-E. A structural analogy is underlined between cryptoconcatone D and two known compounds with an α,β-unsaturated δ-lactone: pironetin and the styryl-lactone goniothalamin which targets the peroxisomal protein MFE2 (multifunctional enzyme type2). Pironetin is a potent α-tubulin binder with robust anticancer properties. By analogy, the binding of cryptoconcatone D to the pironetin-site of α-tubulin is proposed. The review shed light on the phytochemical constituents of Cryptocarya concinna and the biological properties of α,β-unsaturated lactone compounds isolated from this little studied plant.
Acharyya, R.K., Pal, P., Chatterjee, S., Nanda, S., 2019. Asymmetric total synthesis of cryptoconcatone I. Org. Biomol. Chem. 17(14), 3552-3566.
Bailly, C., Vergoten, G., 2021. Interaction of obtusilactone B and related butanolide lactones with the barrier-to-autointegration factor 1 (BAF1). A computational study. Curr. Res. Pharmacol. Drug Discov. 2, 100059.
Bailly, C., Vergoten, G., 2022. Japonicone A and related dimeric sesquiterpene lactones: Molecular targets and mechanisms of anticancer activity. Inflamm. Res. 71(3), 267-276.
Bakar, S.A.A., Ali, A.M., Noor, S.N.F.M., Hamid, S.B.S., Azhar, N.A., Mohamad, N.M., Ahmad, N.H., 2022. Combination of goniothalamin and sol-gel-derived bioactive glass 45s5 enhances growth inhibitory activity via apoptosis induction and cell cycle arrest in breast cancer cells MCF-7. Biomed. Res. Int. 2022, 5653136.
BGO Plant Database. http://www.qsbg.org/Database/plantdb/herbarium/herbarium-specimen.asp?id=20712
Boucard, V., Broustal, G., Campagne, G.M. 2007. Synthetic approaches to α,β-unsaturated δ-lactones and lactols. Eur. J. Org. Chem. 2007, 225-236.
Braga, C.B., Kido, L.A., Lima, E.N., Lamas, C.A., Cagnon, V.H.A., Ornelas, C., Pilli, R.A., 2020. Enhancing the anticancer activity and selectivity of goniothalamin using pH-sensitive acetalated dextran (Ac-Dex) nanoparticles: A Promising platform for delivery of natural compounds. ACS Biomater. Sci. Eng. 6(5), 2929-2942.
Chang, H.S., Tang, J.Y., Yen, C.Y., Huang, H.W., Wu, C.Y., Chung, Y.A., Wang, H.R., Chen, I.S., Huang, M.Y., Chang, H.W., 2016. Antiproliferation of Cryptocarya concinna-derived cryptocaryone against oral cancer cells involving apoptosis, oxidative stress, and DNA damage. BMC Complement. Altern. Med. 16, 94.
Chang, H.S., Wang, C.S., Lin, C.H., Chen, I.S., Chen, Y.F., 2017. Chemical constituents and cytotoxic activities from the root of Cryptocarya concinna. GA, Basel, Switzerland. (https://coms.events/GA2017/data/abstracts/en/abstract_0260.html).
Chang, H.W., Tang, J.Y., Yen, C.Y., Chang, H.S., Huang, H.W., Chung, Y.A., Chen, I.S., Huang, M.Y., 2016. Synergistic anti-oral cancer effects of UVC and methanolic extracts of Cryptocarya concinna roots via apoptosis, oxidative stress and DNA damage. Int. J. Radiat. Biol. 92(5), 263-272.
Chau, D.T.M., Chung, N.T., Huong, L.T., Hung, N.H., Ogunwande, I.A., Dai, D.N., Setzer, W.N., 2020. Chemical compositions, mosquito larvicidal and antimicrobial activities of leaf essential oils of eleven species of Lauraceae from Vietnam. Plants (Basel) 9(5), 606.
Chen, Y.C., Kung, F.L., Tsai, I.L., Chou, T.H., Chen, I.S., Guh, J.H., 2010. Cryptocaryone, a natural dihydrochalcone, induces apoptosis in human androgen independent prostate cancer cells by death receptor clustering in lipid raft and nonraft compartments. J. Urol. 183(6), 2409-2418.
Chen, Y.C., Yang, C.W., Chan, T.F., Farooqi, A.A., Chang, H.S., Yen, C.H., Huang, M.Y., Chang, H.W., 2022. Cryptocaryone promotes ROS-dependent antiproliferation and apoptosis in ovarian cancer cells. Cells 11(4), 641.
Chou, T.H., Chen, J.J., Lee, S.J., Chiang, M.Y., Yang, C.W., Chen, I.S., 2010. Cytotoxic flavonoids from the leaves of Cryptocarya chinensis. J. Nat. Prod. 73(9), 1470-1475.
Chou, T.H., Chen, J.J., Peng, C.F., Cheng, M.J., Chen, I.S., 2011. New flavanones from the leaves of Cryptocarya chinensis and their antituberculosis activity. Chem. Biodivers. 8(11), 2015-2024.
Chudnoff, M., Tropical timbers of the world. 1984. United States Department of Agriculture, Forest Service, Agriculture Handbook Number 607.
Coulup, S.K., Georg, G.I., 2019. Revisiting microtubule targeting agents: α-Tubulin and the pironetin binding site as unexplored targets for cancer therapeutics. Bioorg. Med. Chem. Lett. 29(15), 1865-1873.
Coulup, S.K., Huang, D.S., Wong, H.L., Georg, G.I., 2019. Identification of the metabolic profile of the α-tubulin-binding natural product (-)-pironetin. J. Med. Chem. 62(3), 1684-1689.
Csókás, D., Bates, R.W., 2019. Synthesis of the proposed structure of cryptoconcatone H. Synlett 30, 178-180.
de Kok, R.P.J., 2015. A revision of Cryptocarya (Lauraceae) from Thailand and Indochina. Gardens’ Bulletin Singapore 67, 309-350.
Della-Felice, F., Pilli, R.A., Sarott, A.M., 2018. Computer-guided total synthesis of natural products. Recent examples and future perspectives. J. Braz. Chem. Soc. 29(5), 1041-1075.
Della-Felice, F., Sarotti, A.M., Pilli, R.A., 2017. Catalytic asymmetric synthesis and stereochemical revision of (+)-cryptoconcatone H. J. Org. Chem. 82(17), 9191-9197.
Dumontet, V., Gaspard, C., Van Hung, N., Fahy, J., Tchertanov, L., Sévenet, T., Guéritte, F., 2001. New cytotoxic flavonoids from Cryptocarya infectoria. Tetrahedron 57(29), 6189-6196.
Dumontet, V., Van Hung, N., Adeline, M.T., Riche, C., Chiaroni, A., Sévenet, T., Guéritte, F., 2004. Cytotoxic flavonoids and alpha-pyrones from Cryptocarya obovata. J. Nat. Prod. 67(5), 858-862.
Feng, R., Guo, Z.K., Yan, C.M., Li, E.G., Tan, R.X., Ge, H.M., 2012. Anti-inflammatory flavonoids from Cryptocarya chingii. Phytochemistry 76, 98-105.
Franck, G., Brödner, K., Helmchen, G., 2010. Enantioselective modular synthesis of cyclohexenones: Total syntheses of (+)-crypto- and (+)-infectocaryone. Org. Lett. 12(17), 3886-3889.
Fujioka, H., Nakahara, K., Oki, T., Hirano, K., Hayashi, T., Kita, Y., 2010. The first asymmetric total syntheses of both enantiomers of cryptocaryone. Tetrahedron Lett. 51(15), 1945-1946.
Girisa, S., Henamayee, S., Parama, D., Rana, V., Dutta, U., Kunnumakkara, A.B., 2021. Targeting farnesoid X receptor (FXR) for developing novel therapeutics against cancer. Mol. Biomed. 2(1), 21.
Govindachari, T.R., Parthasarathy, P.C., 1972. Cryptocaryone, a novel 5′,6′-dihydrochalcone, from Cryptocarya bourdilloni gamb. Tetrahedron Lett. 33, 3419-3420.
He, Q., Fan, Y., Liu, Y., You, Y.X., Rao, L., Su, Y., Xu, Y.K., Lin, B., Zhang, C.R., 2022. Cytotoxic α-pyrone derivatives from Cryptocarya yunnanensis. Nat. Prod. Res. 36(4), 918-924.
Hexum, J.K., Tello-Aburto, R., Struntz, N.B., Harned, A.M., Harki, D.A., 2012. Bicyclic cyclohexenones as inhibitors of NF-κB signaling. ACS Med. Chem. Lett. 3(6), 459-464.
Huang, H.W., Chung, Y.A., Chang, H.S., Tang, J.Y., Chen, I.S., Chang, H.W., 2014a. Antiproliferative effects of methanolic extracts of Cryptocarya concinna Hance roots on oral cancer Ca9-22 and CAL 27 cell lines involving apoptosis, ROS induction, and mitochondrial depolarization. Sci. World J. 2014, 180462.
Huang, W., Zhang, W.J., Cheng, Y.Q., Jiang, R., Wei, W., Chen, C.J., Wang, G., Jiao, R.H., Tan, R.X., Ge, H.M., 2014b. Cytotoxic and antimicrobial flavonoids from Cryptocarya concinna. Planta Med. 80(11), 925-930.
Khaw-On, P., Pompimon, W., Banjerdpongchai, R., 2018. Apoptosis induction via ATM phosphorylation, cell cycle arrest, and er stress by goniothalamin and chemodrugs combined effects on breast cancer-derived MDA-MB-231 Cells. Biomed. Res. Int. 2018, 7049053.
Khaw-On, P., Pompimon, W., Banjerdpongchai, R., 2019. Goniothalamin induces necroptosis and anoikis in human invasive breast cancer MDA-MB-231 Cells. Int. J. Mol. Sci. 20(16), 3953.
Kurniadewi, F., Juliawaty, L.D., Syah, Y.M., Achmad, S.A., Hakim, E.H., Koyama, K., Kinoshita, K., Takahashi, K., 2010. Phenolic compounds from Cryptocarya konishii: Their cytotoxic and tyrosine kinase inhibitory properties. J. Nat. Med. 64(2), 121-125.
Lin, C.T., Chu, F.H., Tseng, Y.H., Tsai, J.B., Chang, S.T., Wang, S.Y., 2007. Bioactivity investigation of Lauraceae trees grown in Taiwan. Pharm. Biol. 45(8), 638-644.
Lin, H.R., Chou, T.H., Huang, D.W., Chen, I.S., 2014. Cryptochinones from Cryptocarya chinensis act as farnesoid X receptor agonists. Bioorg. Med. Chem. Lett. 24(17), 4181-4186.
Liu, J., Zhou, G., Zhang, D., 2007b. Effects of acidic solutions on element dynamics in the monsoon evergreen broad-leaved forest at Dinghushan, China. Part 2: dynamics of Fe, Cu, Mn and Al. Environ. Sci. Pollut. Res. Int. 14(3), 215-218.
Liu, J., Zhou, G., Zhang, D., 2007a. Simulated effects of acidic solutions on element dynamics in monsoon evergreen broad-leaved forest at Dinghushan, China. Part 1: dynamics of K, Na, Ca, Mg and P. Environ. Sci. Pollut. Res. Int. 14(2), 123-129.
Liu, X., Jia, J., Jia, Y., Gu, H., Luo, J., Chen, X., 2018. A Flexible and divergent strategy to flavonoids with a chiral A-ring featuring intramolecular michael addition: Stereoselective synthesis of (+)-cryptocaryone, (+)-cryptogione f, and (+)-cryptocaryanones A and B, as well as (+)-cryptochinones A and C. Org. Lett. 20(7), 1945-1948.
Maddryv, J.A., Joshi, B.S., Newton, M.G., Pelletier, S.W., Partasarathy, P.C., 1985. Crytocaryone: A revised structure. Tetrahedron Lett. 26(45), 5491-5492.
Meragelman, T.L., Scudiero, D.A., Davis, R.E., Staudt, L.M., McCloud, T.G., Cardellina, J.H., 2nd, Shoemaker, R.H. 2009. Inhibitors of the NF-kappaB activation pathway from Cryptocarya rugulosa. J. Nat. Prod. 72(3), 336-339.
Pilli, R.A., de Toledo, I., Meirelles, M.A., Grigolo, T.A., 2019. Goniothalamin-related styryl lactones: Isolation, synthesis, biological activity and mode of action. Curr. Med. Chem. 26(41), 7372-7451.
Prota, A.E., Setter, J., Waight, A.B., Bargsten, K., Murga, J., Diaz, J.F., Steinmetz, M.O., 2016. Pironetin binds covalently to αCys316 and perturbs a major loop and helix of α-tubulin to inhibit microtubule formation. J. Mol. Biol. 428(15), 2981-2988.
Punganuru, S.R., Madala, H.R., Arutla, V., Srivenugopal, K.S., 2018. Selective killing of human breast cancer cells by the styryl lactone (R)-goniothalamin is mediated by glutathione conjugation, induction of oxidative stress and marked reactivation of the R175H mutant p53 protein. Carcinogenesis 39(11), 1399-1410.
Raju, R., Gunawardena, D., Reddell, P., Münch, G., 2022. Cryptocaryoic acids A - C: New phenyl alkyl acids isolated from the leaves of Australian rainforest plant Cryptocarya mackinnoniana. Fitoterapia 162, 105266.
Ren, Y., Yuan, C., Qian, Y., Chai, H.B., Chen, X., Goetz, M., Kinghorn, A.D., 2014. Constituents of an extract of Cryptocarya rubra housed in a repository with cytotoxic and glucose transport inhibitory effects. J. Nat. Prod. 77(3), 550-556.
Seyed, M.A., Jantan, I., Bukhari, S.N., 2014. Emerging anticancer potentials of goniothalamin and its molecular mechanisms. Biomed. Res. Int. 2014, 536508.
Siallagan, J., Hakim, E.H., Syah, Y.M., Juliawaty, L.D., Achmad, S.A., Makmur, L., Mujahidin, D., 2008. Secondary metabolites kurzichalcolactone A and B from Cryptocarya lucida Blume (Lauraceae). Proceeding of The International Seminar on Chemistry, pp. 225-228.
Sophonnithiprasert, T., Aruksakunwong, O., Tashiro, E., Kondoh, Y., Muroi, M., Osada, H., Imoto, M., Watanapokasin, R., 2020. Interaction between goniothalamin and peroxisomal multifunctional enzyme type 2 triggering endoplasmic reticulum stress. Heliyon 6(10), e05200. Corrigendum in Heliyon 2021, 7(2), e05907.
Sun, L., Cai, J., Gonzalez, F.J., 2021. The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer. Nat. Rev. Gastroenterol. Hepatol. 18(5), 335-347.
Tsurumi, F., Miura, Y., Nakano, M., Saito, Y., Fukuyoshi, S., Miyake, K., Newman, D.J., O'Keefe, B.R., Lee, K.H., Nakagawa-Goto, K., 2019. Spiro[3.5]nonenyl meroterpenoid lactones, cryptolaevilactones G-L, an ionone derivative, and total synthesis of cryptolaevilactone M from Cryptocarya laevigata. J. Nat. Prod. 82(9), 2368-2378.
Tsurumi, F., Miura, Y., Saito, Y., Miyake, K., Fujie, T., Newman, D.J., O'Keefe, B.R., Lee, K.H., Nakagawa-Goto, K., 2018. Secondary metabolites, monoterpene-polyketides containing a Spiro[3.5]nonane from Cryptocarya laevigata. Org. Lett. 20(8), 2282-2286.
Vergoten, G., Bailly, C., 2022. Molecular docking study of GSK-3β interaction with nomilin, kihadanin B, and related limonoids and triterpenes with a furyl-δ-lactone core. J. Biochem. Mol. Toxicol. 36(9), e23130.
Wang, S.C., Chang, H.S., Tang, J.Y., Farooqi, A.A., Kuo, Y.T., Hsuuw, Y.D., Lee, J.W., Chang, H.W., 2022. Combined treatment with cryptocaryone and ultraviolet C promotes antiproliferation and apoptosis of oral cancer cells. Int. J. Mol. Sci. 23(6), 2981.
Wu, M., Wei, C.R., Liao, J.Z., Zhong, L.X., Huang, S.D., Qin, W.M., 2020. Growth law and stand regeneration characteristics of Cryptocarya concinna plantation. J. Southern Agricult. 51(9), 2199-2204.
Yang, B.Y., Kong, L.Y., Wang, X.B., Zhang, Y.M., Li, R.J., Yang, M.H., Luo, J.G., 2016. Nitric oxide inhibitory activity and absolute configurations of arylalkenyl α,β-unsaturated δ/γ-lactones from Cryptocarya concinna. J. Nat. Prod. 79(1), 196-203.
Yang, B.Y., Shi, Y.M., Luo, J.G., Kong, L.Y., 2017. Two new arylalkenyl α,β-unsaturated δ-lactones with cytotoxic activity from the leaves and twigs of Cryptocarya concinna. Nat. Prod. Res. 31(12), 1409-1413.
Yin, Y., Wang, M., Gu, W., Chen, L., 2021. Intestine-specific FXR agonists as potential therapeutic agents for colorectal cancer. Biochem. Pharmacol. 186, 114430.
Yoo, W.J., Chen, W., Nguyen, T.V.Q., Kobayashi, S., 2020. One-Pot synthesis of α,β-unsaturated γ-lactones and lactams via a sequential trans-hydroalumination and catalytic carboxylation of propargyl alcohols and amines with carbon dioxide. Org. Lett. 22(6), 2328-2332.
Yu, Z., Zhang, P., Lin, W., Zheng, X., Cai, M., Peng, C., 2019. Sequencing of anthocyanin synthesis-related enzyme genes and screening of reference genes in leaves of four dominant subtropical forest tree species. Gene 716, 144024.
Zhang, M., Yahara, T., Tagane, S., Rueangruea, S., Suddee, S., Moritsuka, E., Suyama, Y., 2020. Cryptocarya kaengkrachanensis, a new species of Lauraceae from Kaeng Krachan National Park, southwest Thailand. PhytoKeys 140, 139-157.
Zhang, T.J., Zheng, J., Yu, Z.C., Huang, X.D., Zhang, Q.L., Tian, X.S., Peng, C.L., 2018. Functional characteristics of phenolic compounds accumulated in young leaves of two subtropical forest tree species of different successional stages. Tree Physiol. 38(10), 1486-1501.
Zhu, H., Zhang, T.J., Zhang, P., Peng, C.L., 2016. Pigment patterns and photoprotection of anthocyanins in the young leaves of four dominant subtropical forest tree species in two successional stages under contrasting light conditions. Tree Physiol. 36(9), 1092-104.
Zoccolotti, J.O., Cavalheiro, A.J., Tasso, C.O., Ribas, B.R., Ferrisse, T.M., Jorge, J.H., 2021. Antimicrobial efficacy and biocompatibility of extracts from Cryptocarya species. PLoS One 16(12), e0261884.