اصلاح برخی بدفهمیهای دانشی و باوری دانشآموزان پایه سوم ابتدایی بر مبنای چهارچوبهای حل مسئله شونفلد و گانیه
الموضوعات : پژوهش در برنامه ریزی درسیسپیده نوروزی 1 , محمود مهرمحمدی 2 , ابراهیم ریحانی 3 , هاشم فردانش 4 , محسن ایمانی نائینی 5
1 - دانشجوی دکتری برنامهریزی درسی دانشگاه تربیت مدرس، تهران، ایران.
2 - استادتمام گروه تعلیم و تربیت دانشگاه تربیت مدرس، تهران، ایران.
3 - دانشیار گروه ریاضی دانشگاه تربیت دبیر شهید رجایی، تهران، ایران.
4 - دانشیار گروه تعلیم و تربیت دانشگاه تربیت مدرس، تهران، ایران.
5 - استادیار گروه تعلیم و تربیت دانشگاه تربیت مدرس، تهران، ایران.
الکلمات المفتاحية: باورهای نادرست, حل مسئله, شونفلد, گانیه, بدفهمیهای ریاضی,
ملخص المقالة :
هدف از انجام این پژوهش اصلاح تعدادی از بدفهمیهای دانشی و باوری اثرگذار در حل مسئله ریاضی دانشآموزان سوم ابتدایی بر مبنای برخی دلالتهای تربیتی مطرح در آموزش ریاضی بود. جامعه آماری این پژوهش کلیه دانشآموزان سوم ابتدایی یکی از مدارس منطقه 3 تهران بود که پس از برگزاری آزمونهای تشخیصی، 9 دانشآموز با نمونهگیری هدفمند انتخاب شدند. برای انجام این پژوهش از یک ابزار تشخیصی محقق ساخته، مصاحبه نیمه ساختاریافته، آزمون حافظه فعال وکسلر4 و داستانهای محقق ساخته استفاده شد. روایی ابزارهای محقق ساخته با تأیید صاحبنظران و پایایی آزمون محقق ساخته با روش بازآزمایی و ضریب همبستگی 0.87 مورد تأیید قرار گرفت. تحلیل دادهها با کمک آزمون ویلکاکسون و از طریق نرمافزار SPSS19 انجام شد. آزمون ویلکاکسون تفاوت معنیداری را در نمره درک مفهوم و اصلاح بدفهمیهای دانشی نشان داد. همچنین تحلیل مصاحبهها نشاندهنده تغییر باور دانشآموزان نسبت به عوامل اثرگذار در موفقیت آنها است. استفاده از گامهای بازنمایی عینی، نیمه تجسمی و انتزاعی در دانشآموزان با حافظه فعال قوی و متوسط و گامهای بازنمایی عینی، نیمه تجسمی و درک مسئله با کمک رسم شکل در دانشآموزان ضعیف میتواند به اصلاح برخی بدفهمیهای دانشی در درک مسئله کمک نماید و استفاده از منابع باوری "خود"، "دیگری" و "استنتاج" میتواند بدفهمیهای باوری دانش آموزان را تغییر دهد.
Bakhshalizadeh, S. (2011). Identifying common misconception 4th grade students in mathematics. Retrieved from Tehran: Research project of the academy of Scientific Studies in Education, [persian].
Berk, L. E., & Winsler, A. (1995). Scaffolding Children's Learning: Vygotsky and Early Childhood Education. NAEYC Research into Practice Series. Volume 7: ERIC.
Bull, R., & Espy, K. A. (2006). Working memory, executive functioning, and children’s mathematics. In S. J. Pickering (Eds.), Working memory and education (pp 93-123). New York: Academic Press.
Clerc, J., Miller, P. H., & Cosnefroy, L. (2014). Young children's transfer of strategies: Utilization deficiencies, executive function, and metacognition. Developmental Review, 34(4), 378-393.
Cowan, N. (2005). Working memory capacity. New York: Psychology press.
CTDF. (2012). Second grade mathematics. Tehran: Organization for publish and distribution. Available from: http://www.chap.sch.ir/, [persian].
CTDF. (2013). Third grade mathematics. Tehran: Organization for publish and distribution. Available from: http://www.chap.sch.ir/, [persian].
Desoete, A. (2008). Multi-method assessment of metacognitive skills in elementary school children: How you test is what you get. Metacognition and learning, 3(3), 189.
Desoete, A., Roeyers, H., & Buysse, A. (2001). Metacognition and mathematical problem solving in grade 3. Journal of Learning Disabilities, 34(5), 435-447.
Egan, K. (1989). Teaching as story telling: An alternative approach to teaching and curriculum in the elementary school. Chicago: University of Chicago Press.
Egan, K. (2005). An imaginative approach to teaching. San Francisco.
Eleftherios, K., & Theodosios, Z. (2007). STUDENTS’BELIEFS AND ATTITUDES ABOUT STUDYING AND LEARNING MATHEMATICS. Paper presented at the Proceedings of the 31st Conference on the International Group for the Psychology of Mathematics Education.
Fadai, M. R. (2013). Belief, basic of teaching. Roshd Mathematics Education, 107(29), 16-21, [persian].
Fardanesh, H. (2011). Theoretical Foundations of Instructional Technoligy. Tehran: Samt, [persian].
Francisco, J. M. (2013). The mathematical beliefs and behavior of high school students: Insights from a longitudinal study. The Journal of Mathematical Behavior, 32(3), 481-493.
Gange, E. D. (1985). The cognitive psychology of School Learning. Boston: Little, Brown and Company press.
Gathercole, S. E., Lamont, E., & Alloway, T. P. (2006). Working memory in the classroom. In S. J. Pickering (Eds.), Working memory and education (pp 219-240). New York: Academic press.
Hjalmarson, M., & Salkind, G. M. (2007). Mathematical representations. Gwenanne M. Salkind George Mason University EDCI 857 Preparation and Professional Development of Mathematics Teachers.
Hogan, K. E., & Pressley, M. E. (1997). Scaffolding student learning: Instructional approaches and issues: Brookline Books.
Izadi, M., Reyhani, E., & Ahadi, G. A. (2015). Teaching addition and subtraction: A comparative study on the math curriculum goals and the content of the first-grade math textbook in Iran, Japan, and the USA. Research in Curriculum Planning, 2(19), 55-74, [persian].
Kadivar, P. (2007). Educational psychology. Tehran: Samt, [persian].
Karimi, F., Moradi, A., Kadivar, P., & Nuri, R. K. (2015). Predicting student performance in verbal Math problem based on Cognitive, Metacognitive, and affective Factors. Quarterly journal of education. Quarterly Journal of Education, 31(1), 13-44, [persian].
Leder, G. C., Pehkonen, E., & Törner, G. (2006). Beliefs: A hidden variable in mathematics education? (Vol. 31): Springer Science & Business Media.
Lester Jr, F. K. (2013). Thoughts about research on mathematical problem-solving instruction. The Mathematics Enthusiast, 10(1/2), 245.
Martin, M. O., Mullis, I. V., Foy, P., & Stanco, G. M. (2012). TIMSS 2011 International Results in Science: ERIC.
Marzughi, R. (2005). Metacognition, theories and implications for education. Tehran: Meshkat, [persian].
Mello, R. (2001). The Power of Storytelling: How Oral Narrative Influences Children's Relationships in Classrooms.
Mogonea, F.-R., & Mogonea, F. (2013). The Specificity of Developing Metacognition at Children with Learning Difficulties. Procedia-Social and Behavioral Sciences, 78, 155-159.
Panaoura, A. (2012). Improving problem solving ability in mathematics by using a mathematical model: A computerized approach. Computers in Human Behavior, 28(6), 2291-2297.
Pillen, M., Beijaard, D., & den Brok, P. (2013). Professional identity tensions of beginning teachers. Teachers and Teaching, 19(6), 660-678.
Pound, L., & Lee, T. (2015). Teaching mathematics creatively. New York: Routledge.
Reyhani, E., Ahmadi, G., & Karami Zarandi, Z. (2011). Comparative study of the problem solving process taught in high school mathematics curriculum America, Australia, Japan, Singapore and Iran. Quarterly Journal of Education, 27(1), 115-142, [persian].
Reys, R. E., Lindquist, M., Lambdin, D. V., & Smith, N. L. (2014). Helping children learn mathematics: John Wiley & Sons.
Santagata, R. (2005). Practices and beliefs in mistake-handling activities: A video study of Italian and US mathematics lessons. Teaching and Teacher Education, 21(5), 491-508.
Schiro, M. S. (2004). Oral storytelling and teaching mathematics: Pedagogical and multicultural perspectives. Unites States of America: SAGE publications.
Schoenfeld, A. H. (1985). Mathematical problem solving. London: ACADEMIC Press.
Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. In D. Grouws (Ed.), Handbook for research on mathematics teaching and learning (pp. 334–370). New York: Macmillan.
Schoenfeld, A. H. (2010). How we think: A theory of goal-oriented decision making and its
_||_