چالشها و روندهای اخیر در طراحی و توسعه زیرساخت شارژ خودروهای الکتریکی
الموضوعات :
1 - دانشکده مهندسی برق، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، خوراسگان، اصفهان، ایران
الکلمات المفتاحية: شبکه برق, شبکه حمل و نقل, زیرساخت شارژ, خودروی الکتریکی,
ملخص المقالة :
: استفاده از خودروهای الکتریکی بهعنوان یکی از راه حلهای اساسی برای کاهش انتشار گازهای گلخانه ای و صرفه جوئی در مصرف سوخت بنزینی رو به گسترش است. لذا صنعت حمل و نقل مدرن در بسیاری از کشورهای جهان تحت تاثیر مزایای اقتصادی و زیست محیطی وسایل نقلیه الکتریکی در حال تغییر و تحول است. به منظور تسریع روند این تحول، طراحی و توسعه مناسب زیرساخت شارژ اهمیت بهسزایی دارد. علاوه بر این، تجهیز ایستگاههای شارژ به منابع انرژی تجدید پذیر و مدیریت ماهیت متناوب تولید این منابع میتواند منجر به بهبود تحقق اهداف زیست محیطی میگردد. طراحی و توسعه زیرساخت شارژ و افزایش تعداد خودروهای الکتریکی چالشهای مختلفی را برای شبکه برق و شبکه حمل و نقل به همراه دارد. در این راستا ارائه راهکارهای مناسب برای مسائل کلیدی متنوعی همچون مدیریت ازدحام، تعیین مکان و ظرفیت بهینه ایستگاههای شارژ و مدیریت تقاضای شارژ با درنظرگرفتن شرایط و الزامات هر دو شبکه حائز اهمیت می باشد. در این مقاله، آخرین دستاوردها و پیشرفتهای عمده در این حوزه تحقیقاتی جذاب و بهسرعت درحال توسعه را با معرفی اهداف، روشها و دادههای مورد استفاده بهطور جامع مورد بحث و بررسی قرارمیدهیم. بهاینترتیب با برجستهکردن چالشهای موجود راه را برای آشکارسازی شکافهای تحقیقاتی و کمک به محققان در رسیدگی به مشکلات هموار میسازیم.
[1] L. González, E. Siavichay, and J. Espinoza, "Impact of EV fast charging stations on the power distribution network of a Latin American intermediate city," Renewable and Sustainable Energy Reviews, vol. 107, pp. 309-318, 2019, doi: 10.1016/j.rser.2019.03.017.
[2] IEA, "Transport, Improving the sustainability of passenger and freight transport, " International Energy Agency, Paris, Tech. Rep, 2022. [Online]. Available: https://www.iea.org/topics/transport.
[3] R. Fachrizal, M. Shepero, D. van der Meer, J. Munkhammar, and J. Widén, "Smart charging of electric vehicles considering photovoltaic power production and electricity consumption: A review," ETransportation, vol. 4, p. 100056, 2020, doi: 10.1016/j.etran.2020.100056.
[4] E. Delmonte, N. Kinnear, B. Jenkins, and S. Skippon, "What do consumers think of smart charging? Perceptions among actual and potential plug-in electric vehicle adopters in the United Kingdom," Energy Research & Social Science, vol. 60, p. 101318, 2020, doi: 10.1016/j.erss.2019.101318.
[5] C. M. Martinez, X. Hu, D. Cao, E. Velenis, B. Gao, and M. Wellers, "Energy management in plug-in hybrid electric vehicles: Recent progress and a connected vehicles perspective," IEEE Transactions on Vehicular Technology, vol. 66, pp. 4534-4549, 2016, doi: 10.1109/TVT.2016.2582721.
[6] H.-C. Liu, X.-Y. You, Y.-X. Xue, and X. Luan, "Exploring critical factors influencing the diffusion of electric vehicles in China: A multi-stakeholder perspective," Research in Transportation Economics, vol. 66, pp. 46-58, 2017, doi: 10.1016/j.retrec.2017.10.001.
[7] CEM, "EV30@30 Campaign," Clean Energy Ministerial, Tech. Rep., 2022. [Online]. Available: https://www.cleanenergyministerial.org/initiatives-campaigns/ev3030-campaign.
[8] IEA, "Global EV outlook," International Energy Agency, Paris, Tech. Rep., 2022. [Online]. Available: https://www.iea.org/reports/global-ev-outlook-2022/executive-summary.
[9] U. Illmann and J. Kluge, "Public charging infrastructure and the market diffusion of electric vehicles," Transportation Research Part D: Transport and Environment, vol. 86, p. 102413, 2020, doi: 10.1016/j.trd.2020.102413.
[10] S. Sachan, S. Deb, and S. N. Singh, "Different charging infrastructures along with smart charging strategies for electric vehicles," Sustainable cities and society, vol. 60, p. 102238, 2020, doi: 10.1016/j.scs.2020.102238.
[11] Z. Fotouhi, M. R. Hashemi, H. Narimani, and I. S. Bayram, "A general model for EV drivers’ charging behavior," IEEE Transactions on Vehicular Technology, vol. 68, pp. 7368-7382, 2019, doi: 10.1109/TVT.2019.2923260.
[12] N. Garwa and K. R. Niazi, "Impact of EV on Integration with Grid System–A Review," in 2019 8th international conference on power systems (ICPS), 2019, pp. 1-6, doi: 10.1109/ICPS48983.2019.9067587.
[13] S. Deb, K. Kalita, and P. Mahanta, "Distribution network planning considering the impact of electric vehicle charging station load," in Smart Power Distribution Systems, ed: Elsevier, 2019, pp. 529-553, doi: 10.1016/B978-0-12-812154-2.00022-5.
[14] D. L. Greene, E. Kontou, B. Borlaug, A. Brooker, and M. Muratori, "Public charging infrastructure for plug-in electric vehicles: What is it worth?," Transportation Research Part D: Transport and Environment, vol. 78, p. 102182, 2020, doi: 10.1016/j.trd.2019.11.011.
[15] S. Mishra, S. Verma, S. Chowdhury, A. Gaur, S. Mohapatra, G. Dwivedi, and P. Verma, "A comprehensive review on developments in electric vehicle charging station infrastructure and present scenario of India," Sustainability, vol. 13, p. 2396, 2021, doi: 10.3390/su13042396.
[16] G. Alkawsi, Y. Baashar, D. Abbas U, A. A. Alkahtani, and S. K. Tiong, "Review of renewable energy-based charging infrastructure for electric vehicles," Applied Sciences, vol. 11, p. 3847, 2021, doi: 10.3390/app11093847.
[17] S. R. Sinsel, R. L. Riemke, and V. H. Hoffmann, "Challenges and solution technologies for the integration of variable renewable energy sources—a review," renewable energy, vol. 145, pp. 2271-2285, 2020, doi: 10.1016/j.renene.2019.06.147.
[18] A. Dik, S. Omer, and R. Boukhanouf, "Electric Vehicles: V2G for Rapid, Safe, and Green EV Penetration," Energies, vol. 15, p. 803, 2022, doi: 10.3390/en15030803.
[19] A. R. Kizhakkan, A. K. Rathore, and A. Awasthi, "Review of electric vehicle charging station location planning," in 2019 IEEE Transportation Electrification Conference (ITEC-India), 2019, pp. 1-5, doi: 10.1109/ITEC-India48457.2019.ITECINDIA2019-226.
[20] I. S. Bayram, A. Tajer, M. Abdallah, and K. Qaraqe, "Capacity planning frameworks for electric vehicle charging stations with multiclass customers," IEEE Transactions on Smart Grid, vol. 6, pp. 1934-1943, 2015, doi: 10.1109/TSG.2015.2406532.
[21] N. Shaukat, B. Khan, S. Ali, C. Mehmood, J. Khan, U. Farid, M. Majid, S. Anwar, M. Jawad, and Z. Ullah, "A survey on electric vehicle transportation within smart grid system," Renewable and Sustainable Energy Reviews, vol. 81, pp. 1329-1349, 2018, doi: 10.1016/j.rser.2017.05.092.
[22] P. Pradhan, I. Ahmad, D. Habibi, G. Kothapalli, and M. A. Masoum, "Reducing the impacts of electric vehicle charging on power distribution transformers," IEEE Access, vol. 8, pp. 210183-210193, 2020, doi: 10.1109/ACCESS.2020.3040056.
[23] C. Crozier, T. Morstyn, and M. McCulloch, "The opportunity for smart charging to mitigate the impact of electric vehicles on transmission and distribution systems," Applied energy, vol. 268, p. 114973, 2020, doi: 10.1016/j.apenergy.2020.114973.
[24] T. Unterluggauer, J. Rich, P. B. Andersen, and S. Hashemi, "Electric vehicle charging infrastructure planning for integrated transportation and power distribution networks: A review," ETransportation, p. 100163, 2022, doi: 10.1016/j.etran.2022.100163.
[25] A. Shukla, K. Verma, and R. Kumar, "Multi‐objective synergistic planning of EV fast‐charging stations in the distribution system coupled with the transportation network," IET Generation, Transmission & Distribution, vol. 13, pp. 3421-3432, 2019, doi: 10.1049/iet-gtd.2019.0486.
[26] V. H. Fan, Z. Dong, and K. Meng, "Integrated distribution expansion planning considering stochastic renewable energy resources and electric vehicles," Applied energy, vol. 278, p. 115720, 2020, doi: 10.1016/j.apenergy.2020.115720
[27] S. Sun, Q. Yang, J. Ma, A. J. Ferré, and W. Yan, "Hierarchical planning of PEV charging facilities and DGs under transportation-power network couplings," renewable energy, vol. 150, pp. 356-369, 2020, doi: 10.1016/j.renene.2019.12.097.
[28] C. Li, L. Zhang, Z. Ou, Q. Wang, D. Zhou, and J. Ma, "Robust model of electric vehicle charging station location considering renewable energy and storage equipment," Energy, vol. 238, p. 121713, 2022, doi: 10.1016/j.energy.2021.121713.
[29] A. Arias, J. Sanchez, and M. Granada, "Integrated planning of electric vehicles routing and charging stations location considering transportation networks and power distribution systems," International Journal of Industrial Engineering Computations, vol. 9, pp. 535-550, 2018, doi: 10.5267/j.ijiec.2017.10.002.
[30] C. Luo, Y.-F. Huang, and V. Gupta, "Placement of EV charging stations—Balancing benefits among multiple entities," IEEE Transactions on Smart Grid, vol. 8, pp. 759-768, 2015, doi: 10.1109/TSG.2015.2508740.
[31] Y. Zhang, Q. Zhang, A. Farnoosh, S. Chen, and Y. Li, "GIS-Based Multi-Objective Particle Swarm Optimization of charging stations for electric vehicles," Energy, vol. 169, pp. 844-853, 2019, doi: 10.1016/j.energy.2018.12.062.
[32] S. Deb, K. Tammi, K. Kalita, and P. Mahanta, "Charging station placement for electric vehicles: a case study of Guwahati city, India," IEEE Access, vol. 7, pp. 100270-100282, 2019, doi: 10.1109/ACCESS.2019.2931055.
[33] A. Pan, T. Zhao, H. Yu, and Y. Zhang, "Deploying public charging stations for electric taxis: A charging demand simulation embedded approach," IEEE Access, vol. 7, pp. 17412-17424, 2019, doi: 10.1109/ACCESS.2019.2894780.
[34] R. Sa'adati, M. Jafari-Nokandi, and J. Saebi, "Allocation of RESs and PEV fast-charging station on coupled transportation and distribution networks," Sustainable cities and society, vol. 65, p. 102527, 2021, doi: 10.1016/j.scs.2020.102527.
[35] H. Kikusato, K. Mori, S. Yoshizawa, Y. Fujimoto, H. Asano, Y. Hayashi, A. Kawashima, S. Inagaki, and T. Suzuki, "Electric vehicle charge–discharge management for utilization of photovoltaic by coordination between home and grid energy management systems," IEEE Transactions on Smart Grid, vol. 10, pp. 3186-3197, 2018, doi: 10.1109/TSG.2018.2820026.
[36] H. Zhang, Z. Hu, and Y. Song, "Power and transport nexus: Routing electric vehicles to promote renewable power integration," IEEE Transactions on Smart Grid, vol. 11, pp. 3291-3301, 2020, doi: 10.1109/TSG.2020.2967082.
[37] G. Battapothula, C. Yammani, and S. Maheswarapu, "Multi-objective simultaneous optimal planning of electrical vehicle fast charging stations and DGs in distribution system," Journal of Modern Power Systems and Clean Energy, vol. 7, pp. 923-934, 2019, doi: 10.1007/s40565-018-0493-2.
[38] S. Wang, Z. Y. Dong, C. Chen, H. Fan, and F. Luo, "Expansion planning of active distribution networks with multiple distributed energy resources and EV sharing system," IEEE Transactions on Smart Grid, vol. 11, pp. 602-611, 2019, doi: 0.1109/TSG.2019.2926572.
[39] B. Zhou, G. Chen, T. Huang, Q. Song, and Y. Yuan, "Planning PEV fast-charging stations using data-driven distributionally robust optimization approach based on ϕ-divergence," IEEE Transactions on Transportation Electrification, vol. 6, pp. 170-180, 2020, doi: 10.1109/TTE.2020.2971825.
[40] B. Zhou, G. Chen, Q. Song, and Z. Y. Dong, "Robust chance-constrained programming approach for the planning of fast-charging stations in electrified transportation networks," Applied energy, vol. 262, p. 114480, 2020, doi: 10.1016/j.apenergy.2019.114480.
[41] X. Zhang, P. Li, J. Hu, M. Liu, G. Wang, J. Qiu, and K. W. Chan, "Yen’s algorithm-based charging facility planning considering congestion in coupled transportation and power systems," IEEE Transactions on Transportation Electrification, vol. 5, pp. 1134-1144, 2019, doi: 10.1109/TTE.2019.2959716.
[42] Z. Luo, F. He, X. Lin, J. Wu, and M. Li, "Joint deployment of charging stations and photovoltaic power plants for electric vehicles," Transportation Research Part D: Transport and Environment, vol. 79, p. 102247, 2020, doi: 10.1016/j.trd.2020.102247.
[43] J. Yang, J. Dong, and L. Hu, "A data-driven optimization-based approach for siting and sizing of electric taxi charging stations," Transportation Research Part C: Emerging Technologies, vol. 77, pp. 462-477, 2017, doi: 10.1016/j.trc.2017.02.014.
[44] H. Chen, H. Zhang, Z. Hu, Y. Liang, H. Luo, and Y. Wang, "Plug-in electric vehicle charging congestion analysis using taxi travel data in the central area of beijing," arXiv preprint arXiv:1712.07300, 2017, doi: 10.48550/arXiv.1712.07300.
[45] D. I. Choi and D.-E. Lim, "Analysis of the state-dependent queueing model and its application to battery swapping and charging stations," Sustainability, vol. 12, p. 2343, 2020, doi: 10.3390/su12062343.
[46] P. Fan, B. Sainbayar, and S. Ren, "Operation analysis of fast charging stations with energy demand control of electric vehicles," IEEE Transactions on Smart Grid, vol. 6, pp. 1819-1826, 2015, doi: 10.1109/TSG.2015.2397439.
[47] I. Zenginis, J. Vardakas, N. Zorba, and C. Verikoukis, "Performance evaluation of a multi-standard fast charging station for electric vehicles," IEEE Transactions on Smart Grid, vol. 9, pp. 4480-4489, 2017, doi: 10.1109/TSG.2017.2660584.
[48] A. Khaksari, G. Tsaousoglou, P. Makris, K. Steriotis, N. Efthymiopoulos, and E. Varvarigos, "Sizing of electric vehicle charging stations with smart charging capabilities and quality of service requirements," Sustainable cities and society, vol. 70, p. 102872, 2021, doi: 10.1016/j.scs.2021.102872.
[49] W. Kong, Y. Luo, G. Feng, K. Li, and H. Peng, "Optimal location planning method of fast charging station for electric vehicles considering operators, drivers, vehicles, traffic flow and power grid," Energy, vol. 186, p. 115826, 2019, doi: 10.1016/j.energy.2019.07.156.
[50] C. Lee and J. Han, "Benders-and-Price approach for electric vehicle charging station location problem under probabilistic travel range," Transportation Research Part B: Methodological, vol. 106, pp. 130-152, 2017, doi: 10.1016/j.trb.2017.10.011.
[51] J. He, H. Yang, T.-Q. Tang, and H.-J. Huang, "An optimal charging station location model with the consideration of electric vehicle’s driving range," Transportation Research Part C: Emerging Technologies, vol. 86, pp. 641-654, 2018, doi: 10.1016/j.trc.2017.11.026.
[52] F. Ahmad, A. Iqbal, I. Ashraf, and M. Marzband, "Optimal location of electric vehicle charging station and its impact on distribution network: A review," Energy Reports, vol. 8, pp. 2314-2333, 2022, doi: 10.1016/j.egyr.2022.01.180.
[53] F. Teng, Z. Ding, Z. Hu, and P. Sarikprueck, "Technical review on advanced approaches for electric vehicle charging demand management, Part I: Applications in electric power market and renewable energy integration," IEEE Transactions on Industry Applications, vol. 56, pp. 5684-5694, 2020, doi: 10.1109/TIA.2020.2993991.
[54] W. Wei, W. Danman, W. Qiuwei, M. Shafie-Khah, and J. P. Catalao, "Interdependence between transportation system and power distribution system: A comprehensive review on models and applications," Journal of Modern Power Systems and Clean Energy, vol. 7, pp. 433-448, 2019, doi: 10.1007/s40565-019-0516-7.
[55] K. Chaudhari, N. K. Kandasamy, A. Krishnan, A. Ukil, and H. B. Gooi, "Agent-based aggregated behavior modeling for electric vehicle charging load," IEEE Transactions on Industrial Informatics, vol. 15, pp. 856-868, 2018, doi: 10.1109/TII.2018.2823321.
[56] D. Mao, J. Tan, and J. Wang, "Location planning of PEV fast charging station: an integrated approach under traffic and power grid requirements," IEEE Transactions on Intelligent Transportation Systems, vol. 22, pp. 483-492, 2020, doi: 10.1109/TITS.2020.3001086.
[57] S. N. Hashemian, M. A. Latify, and G. R. Yousefi, "PEV fast-charging station sizing and placement in coupled transportation-distribution networks considering power line conditioning capability," IEEE Transactions on Smart Grid, vol. 11, pp. 4773-4783, 2020, doi: 10.1109/TSG.2020.3000113.
[58] H. Zhang, S. J. Moura, Z. Hu, and Y. Song, "PEV fast-charging station siting and sizing on coupled transportation and power networks," IEEE Transactions on Smart Grid, vol. 9, pp. 2595-2605, 2016, doi: 10.1109/TSG.2016.2614939.
[59] X. Bai, K.-S. Chin, and Z. Zhou, "A bi-objective model for location planning of electric vehicle charging stations with GPS trajectory data," Computers & Industrial Engineering, vol. 128, pp. 591-604, 2019, doi: 10.1016/j.cie.2019.01.008.
[60] A. Pal, A. Bhattacharya, and A. K. Chakraborty, "Allocation of electric vehicle charging station considering uncertainties," Sustainable Energy, Grids and Networks, vol. 25, p. 100422, 2021, doi: 10.1016/j.segan.2020.100422.
[61] H. Lin, C. Bian, Y. Wang, H. Li, Q. Sun, and F. Wallin, "Optimal planning of intra-city public charging stations," Energy, vol. 238, p. 121948, 2022, doi: 10.1016/j.energy.2021.121948.
[62] K. Hajar, B. Guo, A. Hably, and S. Bacha, "Smart charging impact on electric vehicles in presence of photovoltaics," in 2021 22nd IEEE International Conference on Industrial Technology (ICIT), 2021, pp. 643-648, doi: 10.1109/ICIT46573.2021.9453600.
[63] S. Limmer, "Dynamic pricing for electric vehicle charging—a literature review," Energies, vol. 12, p. 3574, 2019, doi: 10.3390/en12183574.
[64] H. M. Abdullah, A. Gastli, and L. Ben-Brahim, "Reinforcement learning based EV charging management systems–a review," IEEE Access, vol. 9, pp. 41506-41531, 2021, doi: 10.1109/ACCESS.2021.3064354.
[65] A. R. Bhatti and Z. Salam, "A rule-based energy management scheme for uninterrupted electric vehicles charging at constant price using photovoltaic-grid system," renewable energy, vol. 125, pp. 384-400, 2018, doi: 10.1016/j.renene.2018.02.126.
[66] S. Deb, "Machine Learning for Solving Charging Infrastructure Planning Problems: A Comprehensive Review," Energies, vol. 14, p. 7833, 2021, doi: 10.3390/en14237833.
[67] S. Shahriar, A.-R. Al-Ali, A. H. Osman, S. Dhou, and M. Nijim, "Machine learning approaches for EV charging behavior: A review," IEEE Access, vol. 8, pp. 168980-168993, 2020, doi: 10.1109/ACCESS.2020.3023388.
[68] D. Zhang, X. Han, and C. Deng, "Review on the research and practice of deep learning and reinforcement learning in smart grids," CSEE Journal of Power and Energy Systems, vol. 4, pp. 362-370, 2018, doi: 10.17775/CSEEJPES.2018.00520.
[69] IRENA, "Innovation Outlook: Smart Charging for Electric Vehicles," International Renewable Energy Agency, Paris, Tech. Rep., 2019. [Online]. Available: https://www.irena.org/publications/2019/May/Innovation-Outlook-Smart-Charging.
[70] G. Barone, A. Buonomano, F. Calise, C. Forzano, and A. Palombo, "Building to vehicle to building concept toward a novel zero energy paradigm: Modelling and case studies," Renewable and Sustainable Energy Reviews, vol. 101, pp. 625-648, 2019, doi: 10.1016/j.rser.2018.11.003.
[71] D. Papadaskalopoulos, R. Moreira, G. Strbac, D. Pudjianto, P. Djapic, F. Teng, and M. Papapetrou, "Quantifying the potential economic benefits of flexible industrial demand in the European power system," IEEE Transactions on Industrial Informatics, vol. 14, pp. 5123-5132, 2018, doi: 10.1109/TII.2018.2811734.
[72] K. Chaudhari, A. Ukil, K. N. Kumar, U. Manandhar, and S. K. Kollimalla, "Hybrid optimization for economic deployment of ESS in PV-integrated EV charging stations," IEEE Transactions on Industrial Informatics, vol. 14, pp. 106-116, 2017, doi: 10.1109/TII.2017.2713481.
[73] P. Bhatt, C. Long, and M. Saiyad, "Review of the impact of vehicle-to-grid schemes on electrical power systems," Advances in Electric Power and Energy Infrastructure, pp. 199-208, 2020, doi: 10.1007/978-981-15-0206-4_17.
[74] A. S. Al-Ogaili, T. J. T. Hashim, N. A. Rahmat, A. K. Ramasamy, M. B. Marsadek, M. Faisal, and M. A. Hannan, "Review on scheduling, clustering, and forecasting strategies for controlling electric vehicle charging: Challenges and recommendations," IEEE Access, vol. 7, pp. 128353-128371, 2019, doi: 10.1109/ACCESS.2019.2939595.
[75] Y. Zheng, Y. Shang, Z. Shao, and L. Jian, "A novel real-time scheduling strategy with near-linear complexity for integrating large-scale electric vehicles into smart grid," Applied energy, vol. 217, pp. 1-13, 2018, doi: 10.1016/j.apenergy.2018.02.084.
[76] Y. Xiong, B. Wang, C.-C. Chu, and R. Gadh, "Electric vehicle driver clustering using statistical model and machine learning," in 2018 IEEE Power & Energy Society General Meeting (PESGM), 2018, pp. 1-5, doi: 10.1109/PESGM.2018.8586132.
[77] J. Yang, J. Dong, Q. Zhang, Z. Liu, and W. Wang, "An investigation of battery electric vehicle driving and charging behaviors using vehicle usage data collected in Shanghai, China," Transportation Research Record, vol. 2672, pp. 20-30, 2018, doi: 10.1177/0361198118759015.
[78] Y. Gao, S. Guo, J. Ren, Z. Zhao, A. Ehsan, and Y. Zheng, "An electric bus power consumption model and optimization of charging scheduling concerning multi-external factors," Energies, vol. 11, p. 2060, 2018, doi: 10.3390/en11082060.
[79] S. Faridimehr, S. Venkatachalam, and R. B. Chinnam, "A stochastic programming approach for electric vehicle charging network design," IEEE Transactions on Intelligent Transportation Systems, vol. 20, pp. 1870-1882, 2018, doi: 10.1109/TITS.2018.2841391.
[80] J. J. A. Saldanha, E. M. Dos Santos, A. P. C. De Mello, and D. P. Bernardon, "Control strategies for smart charging and discharging of plug-in electric vehicles," Smart Cities Technologies, vol. 1, pp. 121-141, 2016, doi: 10.5772/65213.
[81] A. M. Ghazvini and J. Olamaei, "Optimal sizing of autonomous hybrid PV system with considerations for V2G parking lot as controllable load based on a heuristic optimization algorithm," Solar Energy, vol. 184, pp. 30-39, 2019, doi: 10.1016/j.solener.2019.03.087.
[82] P. Aliasghari, B. Mohammadi-Ivatloo, M. Alipour, M. Abapour, and K. Zare, "Optimal scheduling of plug-in electric vehicles and renewable micro-grid in energy and reserve markets considering demand response program," Journal of cleaner production, vol. 186, pp. 293-303, 2018, doi: 10.1016/j.jclepro.2018.03.058.
[83] J. Garcia Alvarez, M. Á. González, C. Rodriguez Vela, and R. Varela, "Electric vehicle charging scheduling by an enhanced artificial bee colony algorithm," Energies, vol. 11, p. 2752, 2018, doi: 10.3390/en11102752.
[84] N. Mhaisen, N. Fetais, and A. Massoud, "Real-time scheduling for electric vehicles charging/discharging using reinforcement learning," in 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), 2020, pp. 1-6, doi: 10.1109/ICIoT48696.2020.9089471.
[85] J. Sharma, P.-A. Andersen, O.-C. Granmo, and M. Goodwin, "Deep q-learning with q-matrix transfer learning for novel fire evacuation environment," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, pp. 7363-7381, 2020, doi: 10.1109/TSMC.2020.2967936.
[86] Z. Wei, Z. Quan, J. Wu, Y. Li, J. Pou, and H. Zhong, "Deep deterministic policy gradient-drl enabled multiphysics-constrained fast charging of lithium-ion battery," IEEE Transactions on Industrial Electronics, vol. 69, pp. 2588-2598, 2021, doi: 10.1109/TIE.2021.3070514.
[87] J. Lee, E. Lee, and J. Kim, "Electric vehicle charging and discharging algorithm based on reinforcement learning with data-driven approach in dynamic pricing scheme," Energies, vol. 13, p. 1950, 2020, doi: 10.3390/en13081950.
[88] H. Li, Z. Wan, and H. He, "Constrained EV charging scheduling based on safe deep reinforcement learning," IEEE Transactions on Smart Grid, vol. 11, pp. 2427-2439, 2019, doi: 10.1109/TSG.2019.2955437.
[89] M. Shin, D.-H. Choi, and J. Kim, "Cooperative management for PV/ESS-enabled electric vehicle charging stations: A multiagent deep reinforcement learning approach," IEEE Transactions on Industrial Informatics, vol. 16, pp. 3493-3503, 2019, doi: 10.1109/TII.2019.2944183.
[90] S. Wang, S. Bi, and Y. A. Zhang, "Reinforcement learning for real-time pricing and scheduling control in EV charging stations," IEEE Transactions on Industrial Informatics, vol. 17, pp. 849-859, 2019, doi: 10.1109/TII.2019.2950809.
[91] Z. Wan, H. Li, H. He, and D. Prokhorov, "Model-free real-time EV charging scheduling based on deep reinforcement learning," IEEE Transactions on Smart Grid, vol. 10, pp. 5246-5257, 2018, doi: 10.1109/TSG.2018.2879572.
[92] T. Ding, Z. Zeng, J. Bai, B. Qin, Y. Yang, and M. Shahidehpour, "Optimal electric vehicle charging strategy with Markov decision process and reinforcement learning technique," IEEE Transactions on Industry Applications, vol. 56, pp. 5811-5823, 2020, doi: 10.1109/TIA.2020.2990096.
[93] P. J. Ramírez, D. Papadaskalopoulos, and G. Strbac, "Co-optimization of generation expansion planning and electric vehicles flexibility," IEEE Transactions on Smart Grid, vol. 7, pp. 1609-1619, 2015, doi: 10.1109/TSG.2015.2506003.
[94] D. Qiu, Y. Ye, D. Papadaskalopoulos, and G. Strbac, "A deep reinforcement learning method for pricing electric vehicles with discrete charging levels," IEEE Transactions on Industry Applications, vol. 56, pp. 5901-5912, 2020, doi: 10.1109/TIA.2020.2984614.
[95] N. Sadeghianpourhamami, J. Deleu, and C. Develder, "Definition and evaluation of model-free coordination of electrical vehicle charging with reinforcement learning," IEEE Transactions on Smart Grid, vol. 11, pp. 203-214, 2019, doi: 10.1109/TSG.2019.2920320.
[96] Y. Wang, E. Yao, and L. Pan, "Electric vehicle drivers’ charging behavior analysis considering heterogeneity and satisfaction," Journal of cleaner production, vol. 286, p. 124982, 2021, doi: 10.1016/j.jclepro.2020.124982.
[97] L. Cheng, X. Chen, S. Yang, J. Wu, and M. Yang, "Structural equation models to analyze activity participation, trip generation, and mode choice of low-income commuters," Transportation Letters, vol. 11, pp. 341-349, 2019, doi: 10.1080/19427867.2017.1364460.
[98] D. Tang and P. Wang, "Probabilistic modeling of nodal charging demand based on spatial-temporal dynamics of moving electric vehicles," IEEE Transactions on Smart Grid, vol. 7, pp. 627-636, 2015. doi: 10.1109/TSG.2015.2437415.
[99] S. Sun, Q. Yang, and W. Yan, "A novel Markov-based temporal-SoC analysis for characterizing PEV charging demand," IEEE Transactions on Industrial Informatics, vol. 14, pp. 156-166, 2017, doi: 10.1109/TII.2017.2720694.
[100] T. Yi, C. Zhang, T. Lin, and J. Liu, "Research on the spatial-temporal distribution of electric vehicle charging load demand: A case study in China," Journal of cleaner production, vol. 242, p. 118457, 2020, doi: 10.1016/j.jclepro.2019.118457.
_||_