بهینهﺳﺎزی کنترل متمرکز توان راکتیو و ولتاژ در شبکه های انتقال، بر اساس پخش بار اقتصادی و الگوریتم جستجوی هارمونی
الموضوعات :
محمد مهدی رضایی
1
,
کمال روح الهی
2
,
سیدمحمد مدنی
3
1 - دانشکده مهندسی برق، واحد خمینی شهر، دانشگاه آزاد اسلامی، خمینی شهر ، اصفهان، ایران
2 - دانشکده مهندسی برق، واحد خمینی شهر، دانشگاه آزاد اسلامی، خمینی شهر ، اصفهان، ایران
3 - دانشکده مهندسی برق، دانشگاه اصفهان، اصفهان، ایران
تاريخ الإرسال : 19 الأربعاء , محرم, 1444
تاريخ التأكيد : 07 الثلاثاء , ربيع الثاني, 1444
تاريخ الإصدار : 29 الإثنين , رجب, 1444
الکلمات المفتاحية:
کنترل متمرکز ولتاژ/توان راکتیو,
الگوریتم جستجوی هارمونی,
بهینه سازی سیستم های قدرت,
پخش بار اقتصادی,
ملخص المقالة :
حفظ پروفیل ولتاژ در سطح مناسب برای هرباس در سیستم قدرت، یک عامل کلیدی برای عملکرد مناسب تجهیزات سیستم قدرت بویژه در هنگام بروز اختلال است. با این حال، با توجه به عدم قطعیت بار و محدودیت در عملکرد شبکه، دستیابی به این هدف به یک چالش تبدیل شده است. پست های فشار قوی در کنترل ولتاژ نقش مهمی ایفا می کنند؛ زیرا این پست ها می توانند یک نقطه اتصال اولیه بین شبکه انتقال با ولتاژ بالا و سیستم توزیع باشند. ماهیت کنترل محلی ولتاژ، تنوع ابزار کنترل و تعامل میان آنها باعث شده است که این نوع کنترل دشوار باشد. در این مقاله، یک روش کنترل متمرکز ولتاژ/ توان راکتیو در سیستمهای قدرت با استفاده از فازورهای اندازه گیری شده توسط مانند واحدهای اندازه گیری فازوری (PMU) نصب شده در پستهای شبکه ارائه شده است. در این روش، کنترل کننده مرکزی بر اساس ولتاژهای شبکه و همچنین معادلات شبکه، علاوه بر تعیین تپ ترانسفورماتورها و پله بانکهای خازنی، با انجام پخش بار بهینه، مقادیر مناسب نقطه کار ژنراتورها را نیز بطور بهینه تعیین کند. صحت و کارایی روش پیشنهادی از طریق شبیه سازی در محیط نرم افزار MATLAB مورد بررسی قرار گرفته است.
المصادر:
L. Tabrizchi, M.M. Rezaei, and Sh. Shojaeian. “Probabilistic analysis of small-signal stability in power systems based on direct polynomial approximation.” Sustainable Energy, Grids and Networks, vol. 28, 2021, e100557, doi: 10.1016/j.segan.2021.100557
L. Tabrizchi and M. M. Rezaei. “Probabilistic small-signal stability analysis of power systems based on Hermite polynomial approximation.” SN Applied Sciences, vol. 3, no. 9, 2021, doi: 10.1007/s42452-021-04765-4
M. Koloushani, M. Nasri, and M. M. Rezaei, “Strategic management of stochastic power losses in smart transmission grids.” International Transactions on Electrical Energy Systems, vol. 29, no. 8, e12032, 2019, doi: 10.1002/2050-7038.12032
W. Sauer, and M. A. Pai, Power system dynamics and stability, vol. 101, Upper Saddle River, NJ: Prentice Hall, 2017.
Sotoudeh, J. Soltani, & M.M. Rezaei, “A Robust Control for SCIG-Based Wind Energy Conversion Systems Based on Nonlinear Control Methods.” Journal of Control Automation and Electrical Systems, vol. 32, pp. 735–746, 2021. doi.org/10.1007/s40313-021-00705-0
El-Sehiemy, A. Elsayed, A. Shaheen, E. Elattar, and A. Ginidi. “Scheduling of generation stations, OLTC substation transformers and VAR sources for sustainable power system operation using SNS optimizer.” Sustainability, vol. 13, no. 21, 2021, doi: 10.3390/su132111947
S. Tahanzadeh, F. Zandi, B.Fani, M. Dashtipour, E. Adib and E. Rokrok, “Improvement of Conventional Droop Methods Performance during the Fault Occurrence in an Islanded Micro-Grid Using the Concept of Virtual Impedance.” Technovations in Electrical Engineering & Green Energy System, vol. 1, no. 1, pp. 13-35, 2022, doi: 30486/teeges.2022.691006
S.M. Naji-Esfahani, S.H. Zahiri and M. Delshad, “Modeling and Analysis of SEPIC Converter Stability by Gray Wolf Multi-Objective Algorithm.” Technovations in Electrical Engineering & Green Energy System, vol. 1, no. 2, pp. 29-44, 2022, doi:10.30486/teeges.2022.1957809.1006
Ebrahimi, M. Abedini, and M.M. Rezaei. “A two-step approach to energy management in smart micro-grids aimed at improving social welfare levels and the demand side management effect.” Iranian Electric Industry Journal of Quality and Productivity, vol. 9, no. 3, pp. 56-67, 2020.
J. Ebrahimi, M. Abedini, and M.M. Rezaei. “Optimal scheduling of distributed generations in microgrids for reducing system peak load based on load shifting.” Sustainable Energy, Grids and Networks, vol. 23, 2020, doi: 10.1016/j.segan.2020.100368
J. Ebrahimi, M. Abedini, M.M. Rezaei and M. Nasri. “Optimum design of a multi-form energy in the presence of electric vehicle charging station and renewable resources considering uncertainty.” Sustainable Energy, Grids and Networks, vol. 23, 2020, doi: 10.1016/j.segan.2020.100375
T. T. Nguyen, “A high performance social spider optimization algorithm for optimal power flow solution with single objective optimization.” Energy, vol. 171, pp. 218–240, 2019, doi: 10.1016/j.energy.2019.01.021
M. Riaz, A. Hanif, S.J. Hussain, M.I. Memon, M.U. Ali, A. Zafar, “An optimization-based strategy for solving optimal power flow problems in a power system integrated with stochastic solar and wind power energy.” Appl. Sci. vol. 11, 2021, doi: 10.3390/app11156883
Z. Wang, C.L. Anderson, “A progressive period optimal power flow for systems with high penetration of variable renewable energy sources.” Energies, vol. 14, 2021, doi: 10.3390/en14102815
Y. Amrane, M. Boudour, M. Belazzoug, “A new optimal reactive power planning based on differential search algorithm.” Int J Electr Power Energy Syst, vol. 64, pp. 551-561, 2015, doi: 10.1016/j.ijepes.2014.07.060
A. M. Shaheen, R.A. El-Sehiemy, S.M. Farrag, “A novel adequate bi-level reactive power planning strategy.” Int J Electr Power Energy Syst, vol. 78, pp. 897–909, 2016, doi: 10.1016/j.ijepes.2015.12.004
K. R. Vadivelu, G.V. Marutheswar, “Soft computing technique based reactive power planning using combining multi-objective optimization with improved differential evolution.” Int Electric Eng J, vol. 5, no. 10, pp. 1576–1585, 2014.
J. P. Roselyn, D. Devaraj, S.S. Dash, “Multi objective differential evolution approach for voltage stability constrained reactive power planning problem.” Int J Electric Power Energy Syst , vol. 59, pp. 155–165, 2014, doi: 10.1016/j.ijepes.2014.02.013
H. Liu, V. Krishnan, J.D. McCalley, A. Chowdhury, “Optimal planning of static and dynamic reactive power resources.” IET Gener Transm Distrib, vol. 8, no. 12, pp. 1916-1927, 2014, 10.1049/iet-gtd.2014.0081
H. Suyono, R.N. Hasanah, and E.P. Widyananda. “Power system optimization of static VAR compensator using novel global harmony search method.” International Journal of Electrical and Electronic Engineering & Telecommunications, vol. 8, no. 1 pp. 26-32, 2019, doi:10.18178/ijeetc.8.1.26-32
L. D. Le, D.N. Vo, S.T. Huynh, T.M. Nguyen-Hoang, and P. Vasant. “A hybrid differential evolution and harmony search for optimal power flow with FACTS devices.” International Journal of Operations Research and Information Systems (IJORIS), vol. 11, no. 3, pp. 39-65, 2020, doi: 10.4018/IJORIS.2020070103
T. Zhang and Z.W. Geem. “Review of harmony search with respect to algorithm structure.” Swarm and Evolutionary Computation, vol. 48, pp. 31-43, 2019, doi: 10.1016/j.swevo.2019.03.012
H. Izadfar and S.J. Tabatabaei. “A Harmony Search-Based Approach for Real-Time Volt & Var Control in Distribution Network by Considering Distributed Generations Units.” Modeling and Simulation in Electrical and Electronics Engineering vol. 1, no. 1, pp. 37-42, 2021, doi: 10.22075/MSEEE.2018.803.1037
M. Nazari, B. Mohammadi-Ivatloo, S. Asadi, J.H. Kim, and Z.W. Geem. “Harmony search algorithm for energy system applications: an updated review and analysis.” Journal of Experimental & Theoretical Artificial Intelligence, vol. 31, no. 5, pp. 723-749, 2018, doi: 10.1080/0952813X.2018.1550814
N. C. Yang, and E.W. Adinda. “Matpower-Based Harmonic Power Flow Analysis for Power Systems with Passive Power Filters.” IEEE Access, vol. 9, pp. 167322-167331, 2021, doi: 10.1109/ACCESS.2021.3135496
Ali N. Hasan, and N. Tshivhase. “Voltage regulation system for OLTC in distribution power systems with high penetration level of embedded generation.” International Transactions on Electrical Energy Systems, vol. 29, no. 7, e12111, 2019. doi: 10.1002/2050-7038.12111
A. A. Eladl, M.I. Basha, and A.A. ElDesouky. “Multi-objective-based reactive power planning and voltage stability enhancement using FACTS and capacitor banks.” Electrical Engineering, vol. 104, pp. 3173–3196, 2022. doi: 10.1007/s00202-022-01542-3
_||_