Static Analysis and Fatigue of DHS Implants to Treatment Femoral and Intertrochanteric Neck Fractures Using Ti6Al4V and SS316 Alloys, A Finite Element Analysis
الموضوعات :
A Shokrgozar Navi
1
,
S Etemadi Haghighi
2
,
M Haghpanahi
3
,
A Momeni
4
1 - Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 - Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 - Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
4 - Materials Science and Engineering Department, Hamedan University of Technology, Hamedan, Iran
تاريخ الإرسال : 25 الخميس , شوال, 1443
تاريخ التأكيد : 02 الجمعة , ذو الحجة, 1443
تاريخ الإصدار : 05 الخميس , صفر, 1444
الکلمات المفتاحية:
DHS,
Fatigue,
Intertrochanteric,
Femur,
Finite elements,
ملخص المقالة :
The neck fractures and the femurs intertrochanteric are common complications that are recovered by a multicomponent implant called dynamic hip screw (DHS). In the present study, a standard four-hole DHS with Ti6Al4V (Ti6) and SS316l (SS) alloys for static mode (slow walking) and fatigue mode like normal walking (NW), descending stairs (DS), and falling (FA) by finite elements analysis (FEA) have been evaluated (ANSYS software). The results have been confirmed by similar studies in static mode and maximum Von Mises stress and strain are obtained for Ti6 about 145MPa and 0.191%, and SS about 196 MPa and 0.121%. Most critical stress points occur in cortical screws, plate holes, compression screws, and lag screws, respectively. DHS components with Ti6 alloy have infinite life in NW and DS, also in FA, they have a finite life (107-108 cycle) with alternating Von Mises stress () ~ 425 MPa, while for SS they have finite life in all activities, which NW ~107 cycle, DS~106 cycle,and even in FA cortical screw life of failure reaches to 98 cycles and . The critical regions are the same as the failure regions common in biomechanical and clinical studies. These regions are mainly concentration stress points that lead to DHS failure as the crack grows.
المصادر:
Teoh S.H., 2000, Fatigue of biomaterials: a review, International Journal of Fatigue 22: 825-837.
Niinomi M., Nakai M., 2011, Titanium-based biomaterials for preventing stress shielding between implant devices and bone, International Journal of Biomaterials 2011: 836587.
Tokaji K., 2006, High cycle fatigue behavior of Ti–6Al–4V alloy at elevated temperatures, Scripta Materialia 54: 2143-2148.
Janecek M., Novy F., Harcuba P., Strasky J., Trkoc L., Mhaeded M., Wagnerd L., 2015, The very high cycle fatigue behavior of Ti_6Al_4V alloy, Acta Physica Polonica A 128: 497-502.
Agius D., Kourousis K.I., Wallbrink C., 2018, A review of the As-Built SLM Ti-6Al-4V mechanical properties towards achieving fatigue resistant designs, Metals 8(1): 75.
Berrios J.A., Teer D.G., Puchi-Cabrera E.S., 2001, Fatigue properties of a 316L stainless steel coated with different TiNxn deposits, Surface and Coatings Technology 148: 179-190.
Huang J.Y., Yeh J.J., Jeng S.L., Chen C.Y., Kuo R.C., 2006, High-cycle fatigue behavior of type 316L stainless steel, Materials Transactions 47(2): 409-417.
Berrios-Ortiz J.A., La Barbera-Sosa J.G., Teer D.G., Puchi-Cabrera E.S., 2004, Fatigue properties of a 316L stainless steel coated with different ZrN Deposits, Surface and Coatings Technology 179: 145-157.
Lei Y.B., Wang Z.B., J.L. Xu J.L., Lu K., 2019, Simultaneous enhancement of stress- and strain-controlled fatigue properties in 316L stainless steel with gradient nanostructure, Acta Materialia 168:133-142.
Kanchanomai C., Phiphobmongkol V., Muanjan P., 2008, Fatigue failure of an orthopedic implant – a locking compression plate, Engineering Failure Analysis 15: 521-530.
Spivak J.F., Zuckerman J.D., Kummer F.J., Frankel V.H., 1991, Fatigue failure of the sliding screw in hip fracture fixation: a report of three cases, Journal of Orthopaedic Trauma 5(3): 325-331.
Hunt S., Martin R., Woolridge B., 2011, Fatigue testing of a new locking plate for hip fractures, Journal of Medical and Biological Engineering 32(2): 117-122.
Regazzoni, Rüedi Th., Winquist R., Allgöwer M., 1985, The Dynamic Hip Screw Implant System, Springer-Verlag Berlin Heidelberg.
Wierszycki M., Kąkol W., Lodygowski T., 2006, Fatigue algorithm for dental implant, Foundations of Civil and Environmental Engineering 7: 363-380.
Kouvidis G.K., Sommers M.B., Giannoudis P.V., Katonis P.G., Bottlang M., 2009, Comparison of migration behavior between single and dual lag Screw implants for intertrochanteric fracture fixation, Journal of Orthopaedic Surgery and Research 4: 16.
Siamnuai K., Rooppakhun S., 2012, Influence of plate length on the Mechanical performance of dynamic hip screw, International Association of Computer Science and Information Technology Singapore 23: 48-52.
Necas L., Hrubina M., Cibula Z., Behounek J., Krivanek S., Horak Z., 2017, Fatigue failure of the sliding hip screw – clinical and biomechanical analysis, Computer Methods in Biomechanics and Biomedical Engineering 20: 1364-1372.
Arastu M.H., Phillips L., Duffy P., 2013, An unusual failure of a sliding hip screw in the immediate post-operative period, Injury Extra 44: 23-27.
Tian X., Yabo L., 2016, Screw layout optimization to solve fatigue fracture of femoral Ti alloy metal plate, International Symposium on Materials Application and Engineering 67: 03019.
Sheikh M.S.A., Ganorkar A.P., 2015, Optimization of femoral intramedullary nailing using finite element analysis , International Journal for Innovative Research in Science & Technology 2(4): 123-125.
Bergmann G., Deuretzbacher G., Heller M., Graichen F., Rohlmann A., Strauss J., Duda G.N., 2001, Hip contact forces and gait patterns from routine activities, Journal of Biomechanics 34 : 859-871.
Schwachmeyer V., Damm P., Bender A., Dymke J., Graichen F., 2013, In vivo hip joint loading during post-operative physiotherapeutic exercises, PLoS ONE 8(10): e77807.
Farhoudi H., Oskouei R.H., Zanoosi A.A.P., Jones C.F., Taylor M., 2016, An analytical calculation of frictional and bending moments at the head-neck interface of hip joint implants during different physiological activities, Materials 9(12): 982.
Simoes J.A., Vaz M.A., Blatcher S., Taylor M., 2000, Influence of head constraint and muscle forces on the strain distribution within the intact femur, Medical Engineering and Physics 22: 453-459.
Modenese L., Montefiori E., Wesarg S., Viceconti M., 2018, Investigation of the dependence of joint contact forces on musculotendon parameters using a codified workflow for image-based modelling, Journal of Biomechanics 73: 108-118.
Chalernpon K., Aroonjarattham P., Aroonjarattham K., 2015, Static and dynamic load on hip contact of hip prosthesis and thai femoral bones, International Journal of Mechanical and Mechatronics Engineering 9: 251-255.
Eschweiler J., Fieten L., Anna J.D., Kabir K., Gravius S., Tingart M., Radermacher K., 2012, Application and evaluation of biomechanical models and scores for the planning of total hip arthroplasty, Journal of Engineering in Medicine 226(12): 955-967.
Taheri N.S., Blicblau A.S., Singh M., 2011, Comparative study of two materials for dynamic hip screw during fall and gait loading: titanium alloy and stainless steel, Journal of Orthopaedic Science 16: 805-813.
Orías A.A.E., Deuerling J.M., Landrigan M.D., Renaud J.E., Roeder R.K., 2009, Anatomic variation in the elastic anisotropy of cortical bone tissue in the human femur, Journal ofthe Mechanical Behavior of Biomedical Materials 2(3): 255-263.
Vignoli L., Kenedi P.P., 2016, Bone anisotropy – analytical and finite element analysis, Latin American Journal of Solids and Structures 13(1): 51-72.
Korsa R., Mares, 2012, Numerical identification of orthotropic coefficients of the lamella of a bone’s osteon, Bulletin of Applied Mechanics 8(31): 45-53.
Chang C.W., Chen Y.N., Li C.T., Peng Y.T., Chang C.H., 2015, Role of the compression screw in the dynamic hip–screw system :A finite-element study, Medical Engineering and Physics 37: 1174-1179.
Hrubina M., Horák Z., Bartoška R., Navrátil L., Rosina J., 2013, Computational modeling in the prediction of dynamic hip screw failure in proximal femoral fractures, Journal of Applied Biomedicine 11: 143-151.
Cun Y., Dou C.H., Tian S., Li M., Zhu Y., Cheng X., Chen W., 2020, Traditional and bionic dynamic hip screw fixation for the treatment of intertrochanteric fracture: a finite element analysis, International Orthopaedics 44: 551-559.
Çelik , Mutlu I., Ozkan A., Kisioglu Y., 2019, The evaluation of the relation between dynamic hip screw positions and its failure in unstable femur fractures, Australian Journal of Mechanical Engineering 19: 261-267.
Kajzer W., Prajsnar G., Kajzer A., Rodak L., Marciniak J., Mielnik M., Semenowicz J., Hermanson J., Koczy B., 2017, Application of Dynamic Hip Screw System in Treatment of Intertrochanteric Fracture, Innovations in Biomedical Engineering.
Viceconti M., Casali M., Massari B., Cristofolini L., Bassinit S., Tonis A., 1996, The ‘standardized femur program’ proposal for a reference geometry to be used for the creation of finite element models of the femur, Journal of Biomechanics 29(9):1241.
Nica M., Cretu B., Ene D., Iulian Antoniac I., Gheorghita D., Ene R., 2020, Failure analysis of retrieved osteosynthesis implants, Materials 13(5): 1201.
Zeng W., Liu Y., Hou X., 2020, Biomechanical evaluation of internal fixation implants for femoral neck fractures: A comparative finite element analysis, Computer Methods and Programs in Biomedicine 196: 105714.
Heller M.O., Bergmann G., Kassi J.-P., Claes L., Haas N.P., Duda G.N., 2005, Determination of muscle loading at the hip joint for use in pre-clinical testing, Journal of Biomechanics 38: 1155-1163.
Santos C.T.D., Barbosa C., Monteiro M.D.J., Abud I.D.C., Caminha I.M.V., Roesler C.R.D.M., 2015, Fretting corrosion tests on orthopedic plates and screws made of ASTM F138 stainless steel, Research on Biomechanical Engineering 31(2): 169-175.
LeeC., Lin S.C., Kang M.J., Wu S.W., Fu P.Y., 2010, Effects of implant threads on the contact area and stress distribution of marginal bone, Journal of Dental Sciences 5(3): 156-165.
Kuroda S., Tanaka E., 2014, Risks and complications of mini screw anchorage in clinical orthodontics, Japanese Dental Science Review 50: 79-85.