A numerical solution of Nagumo telegraph equation by Adomian decomposition method
الموضوعات :
1 - Department of Mathematics, Islamic Azad University, Saveh-Branch, Saveh
39187/366, Iran.
الکلمات المفتاحية: Adomian decomposition method, ENagumo telegraph equation,
ملخص المقالة :
In this work, the solution of a boundary value problem is discussed via asemi analytical method. The purpose of the present paper is to inspect theapplication of the Adomian decomposition method for solving the Nagumotelegraph equation. The numerical solution is obtained for some special casesso that demonstrate the validity of method.
1] T. A. Abassy, Improved Adomian decomposition method, Comput. Math.
Appl. 9 (2010), 42{54.
[2] S. Abbasbandy, Soliton solutions for the Fitzhugh-Nagumo equation with
the homotopy analysis method, Appl. Math. Model., 32 (2008), 2706{2714.
[3] S. Abbasbandy, A Numerical solution of Blasius equation by Adomian's
decomposition method and comparison with homotopy perturbation
method, Chaos, Solitons and Fractals, 31 (2007), 257{260.
[4] S. Abbasbandy, Improving Newton-Raphson method for nonlinear
equations by modied Adomian decomposition method, Appl. Math.
Comput. 145 (2004), 887{893.
[5] S. Abbasbandy, M.T. Darvish, A numerical solution of Burger's equation
by modied Adomian method, Appl. Math. Comput. 163 (2005), 1265{
1272.
[6] H.A. Abdusalam, E.S. Fahmy, Cross-diusional eect in a telegraph
reaction diusion Lotka-Volterra two competitive system, Chaos, Solitons
& Fractals, 18 (2003), 259{264.
[7] H. A. Abdusalam, Analytic and approximate solutions for Nagumo
telegraph reaction diusion equation, Appl. Math. Comput. 157 (2004),
515{522.
[8] G. Adomain, Solving frontier problems of physics: The decomposition
method, Kluwer Academic Publishers, Boston, 1994.
[9] G. Adomian, Nonlinear stochastic operator equations, Academic Press,
1986.
[10] G. Adomian, A review of the decomposition method in applied
mathematics, J. Math. Anal. Appl. 135 (1998), 501{544.
[11] G. Adomian, Y. Charruault, Decomposition method-A new proof of
convergency, Math. Comput. Model. 18 (1993), 103{106.
[12] E. Ahmed, H. A. Abdusalam, E. S. Fahmy, On telegraph reaction diusion
and coupled map lattice in some biological systems, Int. J. Mod. Phys C,
2 (2001), 717{723.
[13] E. Babolian, J. Biazar, Solution of a system of nonlinear Volterra integral
equations by Adomian decomposition method, Far East J. Math. Sci. 2
(2000), 935{945.
[14] E. Babolian, Sh. Javadi, H. Sadeghi, Restarted Adomian method for
integral equations, Appl. Math. Comput. 153 (2004), 353{359.
[15] S. A. El-Wakil, M. A. Abdou, New applications of Adomian decomposition
method, Chaos, Solitons and Fractals 33 (2007), 513{522.
[16] A. C. Metaxas, R. J. Meredith, Industrial microwave, heating, Peter
Peregrinus, London, 1993.
[17] N. Ngarhasts, B. Some, K. Abbaoui, Y. Cherruault, New numerical study
of Adomian method applied to a diusion model, Kybernetes 31 (2002),
61{75.
[18] W. Liu, E. Van Vleck, Turning points and traveling waves in FitzHugh-
Nagumo type equations, J. Di. Eq. 2 (2006), 381{410.
[19] G. Roussy, J. A. Pearcy, Foundations and industrial applications of
microwaves and radio frequency elds, John Wiley, New York, 1995.
[20] R. A. Van Gorder, K. Vajravelu, A variational formulation of the Nagumo
reaction-diusion equation and the Nagumo telegraph equation, Nonlinear
Analysis: Real World Applications 4 (2010), 2957{2962.