The relationships between galectin-3 levels with cardiac structure and function in resistance-trained athletes
الموضوعات : Journal of Physical Activity and Hormones
1 - Department of Exercise physiology, Marvdasht branch, Islamic Azad University, Marvdasht, Iran
الکلمات المفتاحية: Galectin-3, Cardiac structure, Cardiac function, Resistance-trained athletes,
ملخص المقالة :
Introduction: Galectin-3 is a new and promising biomarker for heart failure and myocardial fibrosis. Although clinical studies indicated that galectin-3 levels are strongly associated with changes of left ventricular structure and function in patients with chronic heart failure, but these relationships in athletes are not well known. The present study was conducted to examine the relationships between galectin-3 levels with cardiac structure and function in resistance-trained athletes. Material & Methods: Fifteen resistance-trained male athletes (aged: 23.0 ± 1.4 years and BMI: 24.1 ± 1.4 kg/m2; ± SD) volunteered to participate in this study. Galectin-3 concentrations were assessed by enzyme-linked immunosorbent assay (ELISA) kits and cardiac morphology and function were assessed by echocardiography. Pearson correlation test was used to analyze the relationship between the variables. Results: The results demonstrated that there were no significant relationships between galectin-3 concentrations with left ventricle ejection fraction (LVEF) (r= ‒ 0.12 , P = 0.6), aorta (r = 0.12 , P = 0.6) and pulmonary artery diameter (r = 0.25 , P = 0.3), posterior wall thickness of left ventricle at end diastole (PWTLV) (r = ‒ 0.27 , P = 0.3), interventricular septal (r = ‒ 0.15 , P = 0.9), left ventricle end-diastolic volume (LVEDV) (r = 0.009 , P = 0.9), and left ventricle end-systolic volume (LVESV) (r = 0.24 , P = 0.3). Conclusions: In conclusion, galectin-3 concentration is not a powerful predictor for cardiac structure and function in resistance-trained athletes.
1. Maron BJ. Structural features of the athlete heart as defined by echocardiography. J Am Coll Cardiol 1986; 7: 190-203.
2. Morganroth J, Maron BJ, Henry WL, Epstein SE. Comparative left ventricular dimensions in trained athletes. Ann Intern Med 1975; 82: 521-524.
3. D'Andrea A, Limongelli G, Caso P, Sarubbi B, Della Pietra A, Brancaccio P, et al. Association between left ventricular structure and cardiac performance during effort in two morphological forms of athletes heart. Int J Cardiol 2002; 86: 177-184.
4. D'Andrea A, Caso P, Scarafile R, Salerno G, De Corato G, Mita C, et al. Biventricular myocardial adaptation to different training protocols in competitive master athletes. Int J Cardiol 2007; 115: 342-349.
5. D'Andrea A, Caso P, Severino S, Galderisi M, Sarubbi B, Limongelli G, et al. Effects of different training protocols on left ventricular myocardial function in competitive athletes: a Doppler tissue imaging study. Ital Heart J 2002; 3: 34-40.
6. Spence AL, Naylor LH, Carter HH, Buck CL, Dembo L, Murray CP, et al. A prospective randomised longitudinal MRI study of left ventricular adaptation to endurance and resistance exercise training in humans. J Physiol 2011; 589(Pt 22): 5443-5452.
7. Barondes SH, Cooper DN, Gitt MA, Leffler H. Galectins. Structure and function of a large family of animal lectins. J Biol Chem 1994; 269: 20807-20810.
8. Rapoport EM, Kurmyshkina OV, Bovin NV. Mammalian galectins: structure, carbohydrate specificity, and functions. Biochemistry (Mosc) 2008; 73: 393-405.
9. Dumic J, Dabelic S, Flogel M. Galectin-3: an open-ended story. Biochim Biophys Acta 2006; 1760: 616-635.
10 Kim H, Lee J, Hyun JW, Park JW, Joo HG, Shin T. Expression and immunohistochemical localization of galectin-3 in various mouse tissues. Cell Biol Int 2007; 31: 655-662.
11. Liu FT, Rabinovich GA. Galectins: regulators of acute and chronic inflammation. Ann N Y Acad Sci 2010; 1183: 158-182.
12. de Boer RA, Voors AA, Muntendam P, van Gilst WH, van Veldhuisen DJ. Galectin-3: a novel mediator of heart failure development and progression. Eur J Heart Fail 2009; 11: 811-817.
13. van der Velde AR, Gullestad L, Ueland T, Aukrust P, Guo Y, Adourian A, et al. Prognostic value of changes in galectin-3 levels over time in patients with heart failure: data from CORONA and COACH. Circ Heart Fail 2013; 6: 219-226.
14. Daniels LB, Clopton P, Laughlin GA, Maisel AS, Barrett-Connor E. Galectin-3 is independently associated with cardiovascular mortality in community-dwelling older adults without known cardiovascular disease: the Rancho Bernardo Study. Am Heart J 2014; 167: 674-682.
15. Chiu CG, Strugnell SS, Griffith OL, Jones SJ, Gown AM, Walker B, et al. Diagnostic utility of galectin-3 in thyroid cancer. Am J Pathol 2010; 176: 2067-2081.
16. Barrow H, Guo X, Wandall HH et al. Serum galectin-2, -4, and -8 are greatly increased in colon and breast cancer patients and promote cancer cell adhesion to blood vascular endothelium. Clin Cancer Res 2011;17:7035–46.
17. Chen C, Duckworth CA, Zhao Q, Pritchard DM, Rhodes JM, Yu LG. Increased circulation of galectin-3 in cancer induces secretion of metastasis-promoting cytokines from blood vascular endothelium. Clin Cancer Res 2013;19:1693–704.
18. Gustafsson F, Badskjær J, Hansen FS, Paulsen AH, Hildebrandt P. Value of N-terminal proBNP in the diagnosis of left ventricular systolic dysfunction in primary care patients referred for echocardiography. Heart Drug 2003; 3: 141-146.
19. Gardner RS, Ozalp F, Murday AJ, Robb SD, McDonagh TA. N-terminal pro-brain natriuretic peptide. A new gold standard in predicting mortality in patients with advanced heart failure. Eur Heart J 2003; 24: 1735-1743.
20. Costello-Boerrigter LC, Boerrigter G, Redfield MM, Rodeheffer RJ, Urban LH, Mahoney DW, et al. Amino-terminal pro-B-type natriuretic peptide and B-type natriuretic peptide in the general community: determinants and detection of left ventricular dysfunction. J Am Coll Cardiol 2006; 47: 345-353.
21. Bordbar S, Bigi MA, Aslani A, Rahimi E, Ahmadi N. Effect of endurance and strength exercise on release of brain natriuretic peptide. J Cardiovasc Dis Res 2012; 3: 22-25.
22. Chen K, Jiang RJ, Wang CQ, Yin ZF, Fan YQ, Cao JT, Han ZH, et al. Predictive value of plasma galectin-3 in patients with chronic heart failure. Eur Rev Med Pharmacol Sci 2013; 17: 1005-1011.
23. Armstrong WF, Feigenbaum H. Echocardiography. In: Braunwald E, Zipes DP, Libby P, eds. Heart disease: a textbook of cardiovascular medicine, 6th ed. Philadelphia: WB Saunders, 2001: 160-228.
24. Kou S, Caballero L, Dulgheru R, Voilliot D, De Sousa C, Kacharava G, et al. Echocardiographic reference ranges for normal cardiac chamber size: results from the NORRE study. Eur Heart J Cardiovasc Imaging 2014; 15: 680-690.
25. Fagard RH. Impact of different sports and training on cardiac structure and function. Cardiol Clin 1997; 15: 397-412.
26. Haykowsky MJ, Quinney HA, Gillis R, Thompson CR. Left ventricular morphology in junior and master resistance trained athletes. Med Sci Sports Exerc 2000; 32: 349-352.
27. Barauna VG, Rosa KT, Irigoyen MC, de Oliveira EM. Effects of resistance training on ventricular function and hypertrophy in a rat model. Clin Med Res 2007; 5: 114-120.
28. Spirito P, Pelliccia A, Proschan MA, Granata M, Spataro A, Bellone P, et al. Morphology of the “athlete’s heart” assessed by echocardiography in 947 elite athletes representing 27 sports. Am J Cardiol 1994; 74: 802-806.
29. Shimizu G, Hirota Y, Kita Y, Kawamura K, Saito T, Gaasch WH. Left ventricular midwall mechanics in systemic arterial hypertension. Myocardial function is depressed in pressure-overload hypertrophy. Circulation 1991; 83: 1676-1684.
30. Hildick-Smith DJ, Shapiro LM. Echocardiographic differentiation of pathological and physiological left ventricular hypertrophy. Heart 2001; 85: 615-619.
31. Nishimura RA, Housmans PR, Hatle LK, Tajik AJ. Assessment of diastolic function of the heart: background and current applications of Doppler echocardiography. Part I. Physiologic and pathophysiologic features. Mayo Clin Proc 1989; 64: 71-81.
32. Colan SD, Sanders SP, Borow KM. Physiologic hypertrophy: effects on left ventricular systolic mechanics in athletes. J Am Coll Cardiol 1987; 9: 776-783.
33. Maron BJ. Hypertrophic cardiomyopathy: a systematic review. JAMA 2002; 287: 1308-1320.
34. Eijsvogels TM, Fernandez AB, Thompson PD. Are there deleterious cardiac effects of acute and chronic endurance exercise? Physiol Rev 2016; 96: 99-125.
35. Hattasch R, Spethmann S, de Boer RA, et al. Galectin-3 increase in endurance athletes. Eur J Prev Cardiol 2014; 21: 1192-1199.
36. Ansari U, Behnes M, Hoffmann J, Natale M, Fastner C, El-Battrawy I, et al. Galectin-3 reflects the echocardiographic grades of left ventricular diastolic dysfunction. Ann Lab Med 2018; 38: 306-315.
37. Sharma UC, Pokharel S, van Brakel TJ, van Berlo JH, Cleutjens JP, Schroen B, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation 2004; 110: 3121-3128.
38. Liu YH, d'Ambrosio M, Liu YD, Peng H, Rhaleb NE, Sharma U, et al. Nacetyl-seryl-aspartyl-lysyl-proline prevents cardiac remodeling and dysfunction induced by galectin-3, a mammalian adhesion/growth-regulatory lectin. Am J Physiol Heart Circ Physiol 2009; 296: H404-H412.
39. de Boer RA, Voors AA, Muntendam P, van Gilst WH, van Veldhuisen DJ. Galectin-3: a novel mediator of heart failure development and progression. Eur J Heart Fail 2009; 11: 811-817.
40. Shah RV, Chen-Tournoux AA, Picard MH, van Kimmenade RR, Januzzi JL. Galectin-3, cardiac structure and function, and long-term mortality in patients with acutely decompensated heart failure. Eur J Heart Fail 2010; 12: 826-832.