Designing an Analytical Model for Assessing Supply Chain Resilience to different Types of Risks: Case Study of Iran Petro-chemical Industries
الموضوعات :
Mohammad Bahrami Seyfabad
1
,
Ahmad Jafar Nejad
2
,
Ezatollah Asghari Zadeh
3
,
Hanan Amo Zad
4
1 - Department of Management, Yasouj branch, Islamic Azad University, Yasouj, Iran
2 - Department of management, faculty of management, University of Tehran, Tehran, Iran
3 - Department of management, faculty of management, University of Tehran, Tehran, Iran
4 - Department of management, faculty of management, University of Tehran, Tehran, Iran
تاريخ الإرسال : 18 السبت , جمادى الأولى, 1442
تاريخ التأكيد : 08 الثلاثاء , ذو القعدة, 1443
تاريخ الإصدار : 16 الجمعة , صفر, 1445
الکلمات المفتاحية:
Fuzzy set theory,
Data envelopment analysis,
Supply chain risk,
resilience,
ملخص المقالة :
The purpose of the study is to develop and test an analytical model for resilience assessment of supply chain risks against the risks of system and its individual tiers. In this regard a multi-method research approach is adopted as follows: By using data envelopment analysis (DEA) and fuzzy set theory, a fuzzy network DEA model has been proposed to assess risk in overall supply chains and their individual tiers. The proposed model is tested by surveying of 130 people as selective petrochemical companies in Iran. The survey results show a substantial variation in resilience ratings between the overall petrochemical supply chains and their individual tiers.The research findings indicate that system resilience is not necessarily indicative of the resilience of its individual tiers. On the other hand, high efficiency scores in supply chain tiers have limited influence on overall resilience of supply chain. The proposed analytical model enables the assessment of supply chain flexibility at different levels for a wide range of supply chain risks in upstream, downstream and downstream process-es.
المصادر:
Kayapinar, Kaya. S., Aycin, E., An integrated interval type 2 fuzzy AHP and COPRAS-G methodologies for supplier selection in the era of Industry 4.0. Neural Computing and Applications. 2021 Aug, 33(16), P.10515-35. Doi::10.21203/rs.3.rs-168876/v1.
Soni, U., Jain, V., and Kumar, S., Measuring supply chain resilience using a deterministic modeling approach, Computers & Industrial Engineering, 2014, 74, P. 11-25. Doi:10.1016/j.cie.2014.04.019.
Schmitt, A.J., and Singh, M., A quantitative analysis of disruption risk in a multi-echelon supply chain, International Journal of Production Economics, 2012, 139(1), P. 22-32. Doi:10.1016/j.ijpe.2012.01.004.
Barroso, A.P., Machado, V.H., Carvalho, H., Machado, V.C., Quantifying the supply chain resilience. Applications of contemporary management approaches in supply chains. 2015, 15(1), P. 13-38. Doi:10.5772/59580.
Blackhurst, J., Craighead, C.W., Elkins, D., and Handfield, R.B., An empirically derived agenda of critical research issues for managing supply-chain disruptions, International Journal of Production Research, 2005, 43(19), P.4067- 4081. Doi:10.1080/00207540500151549.
Pechini, MP., Washington, DC: US Patent and Trademark Office. US patent, 1967, P.330-697. Doi:10.1016/j.ijpe.1967.01.007.
Christopher, M., Creating resilient supplychains, Logistics Europe, 2014, 12(1), P.14-21. Doi:10.1108/09574090410700275.
Rajesh, R., and Ravi, V., Modeling enablers of supply chain risk mitigation in electronic supply chains: A Grey–DEMATEL approach, Computers & Industrial Engineering, 2015, 87, P.126-139. Doi:10.1016/j.cie.2015.04.028.
Pettit, T.J., Fiksel, J., and Croxton, K.L., Ensuring supply chain resilience: development of a conceptual framework, Journal of Business Logistics, 2010, 31(1), P. 1-21. Doi:10.1002/j.2158-1592.2010.tb00125.x.
Liu, C.L., Shang, K.C., Lirn, T.C., Lai, K.H., and Lun, Y.V., Supply chain resilience, firm performance, and management policies in the liner shipping industry, Transportation Research Part A: Policy and Practice, 2018, 110, P. 202- 219. Doi:10.1016/j.tra.2017.02.004.
Pettit, T.J., Fiksel, J., and Croxton, K.L., Ensuring supply chain resilience: development of a conceptual framework, Journal of Business Logistics, 2010, 31(1), P. 1-21. Doi:10.1002/j.2158-1592.2010.tb00125.x.
Kayapinar, Kaya. S., Aycin, E., An integrated interval type 2 fuzzy AHP and COPRAS-G methodologies for supplier selection in the era of Industry 4.0. Neural Computing and Applications, 2021 Aug, 33(16), P.10515-35. Doi:10.21203/rs.3.rs-168876/v1.
Jüttner, U., Supply chain risk management:Understanding the business requirements from apractitioner perspective, The International Journalof Logistics Management, 2005, 16(1), P.120-141. Doi:10.1108/09574090510617385.
Malviya, R.K., Kant, R., and Gupta, A.D., Evaluation and Selection of Sustainable Strategy for Green Supply Chain Management Implementation, Business Strategy and the Environment, 2018, 27(4), P.475-502.
Doi: 10.1002/bse.2016.
Bemthuis, R., Iacob, ME., Havinga, P., A Design of the Resilient Enterprise: A Reference Architecture for Emergent Behaviors Control, Sensors, 2020 Jan, 20(22), 6672. Doi:10.3390/s20226672.
Dwivedi, A., Agrawal, D., Madaan, J., Identification and prioritization of issues to implementation of information-facilitated product recovery system for a circular economy, Modern Supply Chain Research and Applications. 2020 Jul 10. Doi:10.1108/MSCRA-12-2019-0023.
Nikbakhsh, E., Green supply chain management. In: Supply chain and logistics in national, international and governmental environment, Physica-Verlag HD, 2009, P.195-220. Doi:10.1007/978-3-7908-2156-7_9.
Mentzer, J.T., DeWitt, W., Keebler, J, Min, S., Nix, N.W., Smith, C., and Zacharia, Z.G., Defining supplychain management, Journal of Business Logistics, 2001, 22(2), P.1-25. Doi:10.1002/j.2158-1592.2001.tb00001.x.
[
Li, Y., Abtahi, AR, Seyedan, M., Supply chain performance evaluation using fuzzy network data envelopment analysis: a case study in automotive industry, Annals of Operations Research, 2019 Apr, 275(2), 461-84. Doi:10.1007/s10479-018-3027-4.
Rueda, X., Garrett, R.D., and Lambin, E.F., Corporate investments in supply chain sustainability: Selecting instruments in the agrifood industry, Journal of Cleaner Production, 2017, 142, P. 2480-2492. Doi:10.1016/j.jclepro.2016.11.026.
[
Christopher, M., and Peck, H., Buildingthe resilient supply chain, The international Journal of LogisticsmanAgement, 2004, 15(2), P. 1-14. Doi:10.1108/09600030410545436.
Susana, G.A., Carvalho, H., and Machado, V.C., The influence of green practiceson supply chain performance: a case studyapproach, Transportation Research Part E: Logisticsand Transportation Review, 2011, 47(6), P. 850-871. Doi:10.1016/j.tre.2011.05.017.
Mensah, P., and Yuri, M., Developing a Resilient Supply Chain, Procedia-Social and Behavioral Sciences, 2014, 110, P. 309-319. Doi:10.1016/j.sbspro.2013.12.875.
Pettit, T.J., Croxton, K.L., and Fiksel, J., Ensuring supply chain resilience: development and implementation of an assessment tool, Journal of Business Logistics, 2013, 34(1), P. 46-76. Doi:10.1111/jbl.12009.
Blackhurst, J., Dunn, K.S., and Craighead, C.W., An empirically derived framework of global supply resiliency, Journal of Business Logistics, 2011, 32(4), P. 374-391. Doi:10.1111/j.0000-0000.2011.01032.x.
Jüttner, U., Christopher, M., and Baker, S., Demand chain management-integrating marketing and supply chain management, Industrial Marketing Management, 2007, 36(3), P. 377-392. Doi:10.1016/j.indmarman.2005.10.003.
Tajbakhsh, A., and Hassini, E., A data envelopment analysis approach to evaluate sustainability in supply chain networks, Journal of Cleaner Production, 2015, 105, P. 74-85. Doi:10.1016/j.jclepro.2014.07.054.
Zhang, L., and Chen, Y., Equivalent solutions to additive two-stage network data envelopment analysis, European Journal of Operational Research, 2018, 264(3), P. 1189-1191. Doi:10.1016/j.ejor.2017.07.042.
Tavana, M., Izadikhah, M., Di Caprio, D., and Farzipoor Saen, R., A New Dynamic Range Directional Measure for Two-Stage Data Envelopment Analysis Models with Negative Data, Computers & Industrial Engineering, 2018, 115, P. 427–448. Doi:10.1016/j.cie.2017.11.024.
Izadikhah, M., Azadi, M., Toloo, M., and Hussain, F. K., Sustainably resilient supply chains evaluation in public transport: A fuzzy chance-constrained two-stage DEA approach, Applied Soft Computing, 2021, 113, 107879. Doi:10.1016/j.asoc.2021.107879.
Izadikhah, M., and Farzipoor Saen, R., Developing a linear stochastic two-stage data envelopment analysis model for evaluating sustainability of supply chains: a case study in welding industry, Annals of Operations Research, 2021. Doi:10.1007/s10479-021-04160-7.
Izadikhah, M., Farzipoor Saen, R., Ahmadi, K., and Shamsi, M, How to use fuzzy screening system and data envelopment analysis for clustering sustainable suppliers? A case study in Iran, Journal of Enterprise Information Management, 2020, 34(1), P.199-229. Doi:10.1108/JEIM-09-2019-0262.
Nasr, N., Akhavan Niaki, S., Seifbarghy, M., and Husseinzadeh Kashan, A., An Agri-Fresh Food Supply Chain Network Design with Routing Optimization: A Case Study of ETKA Company, Advances in Mathematical Finance and Applications, 2022, 7(1), P.187-198. Doi:10.22034/AMFA.2021.1928061.1584.
Hasani, S.R., Jafarnejad Chaghoshi, A., Safari, H., and Mehregan, M.R., Designing a Sustainable Supply Chain Model with an Emphasis on Behavioral Factors for Foodstuffs in Kermanshah Province, Advances in Mathematical Finance and Applications. 2019, 4(4), P.67-82. Doi:10.22034/AMFA.2019.1874716.1268.
Zamanian, M.R., Sadeh, E., Amini Sabegh, Z., Ehtesham Rasi, R., A fuzzy goal-programming model for optimization of sustainable supply chain by focusing on the environmental and economic costs and revenue: a case study, Advances in Mathematical Finance and Applications, 2019, 4(1), P.103-23. Doi:10.22034/AMFA.2019.578990.1134.
Ahamed, A.J., Skallerud, K., The link between export relationship quality, performance and expectation of continuing the relationship: A South Asia exporters’ perspective. International Journal of Emerging Markets. 2015 Jan 19. Doi:10.1108/IJOEM-04-2012-0036.
Knemeyer, A.M., Zinn, W., and Eroglu, C., Proactive planning for catastrophic events in supply chains, Journal of Operations Management, 2009, 27(2), P. 141-153. Doi:10.1016/j.jom.2008.06.002.
Geng, R., Mansouri, S.A., and Aktas, E., The relationship between green supply chain management and performance: A metaanalysis of empirical evidences in Asian emerging economies, International Journal of Production Economics, 2017, 183, P. 245-258. Doi:10.1016/j.ijpe.2016.10.008.
Malviya, R.K., Kant, R., and Gupta, A.D., Evaluation and Selection of Sustainable Strategy for Green Supply Chain Management Implementation, Business Strategy and the Environment, 2018, 27(4), P. 475-502. Doi:10.1002/bse.2016.
Mandal, S., Supply chain resilience: astate-of-the-art review and research directions, International Journal of Disaster Resilience in the Built Environment, 2018, 5(4), P. 427-453. Doi:10.1108/IJDRBE-03-2013-0003.
Jackson, S., and Ferris, T.L., Resilience principles for engineered systems, Systems Engineering, 2013, 16(2), P. 152-164. Doi: 10.1002/sys.21228.
Ameri, F., and Deba, D., Productlifecycle management: closing the knowledgeloops, Computer-Aided Design and Applications, 2005, 2(5), P.577-590. Doi:10.1080/16864360.2005.10738322.
Sukati, I., Hamid, A.B., Baharun, R., Yusoff, R.M., The study of supply chain management strategy and practices on supply chain performance, Procedia-Social and Behavioral Sciences, 2012, 40(1), P.225-33. Doi:10.1016/j.sbspro.2012.03.185.