طبقه بندی میوه پاپایا برمبنای رسیدگی، با استفاده از یادگیری ماشین و رویکرد یادگیری انتقالی
الموضوعات :محمد قربانی 1 , مصطفی قاضی زاده احسائی 2 , کاظم جعفری نعیمی 3
1 - گروه مهندسی مکانیک بیوسیستم ، دانشکده کشاورزی ، دانشگاه شهید باهنر کرمان ، کرمان ، ایران.
2 - بخش مهندسی کامپیوتر، دانشکده فنی ومهندسی، دانشگاه شهید باهنر کرمان
3 - دانشیار بخش مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران
الکلمات المفتاحية: توصیف گر ویژگی, درجه بندی , رسیدگی, یادگیری انتقالی, یادگیری ماشین,
ملخص المقالة :
درجه بندی و بسته بندی میوه ها بر اساس بازرسی های بصری می تواند زمان بر، مخرب و غیر قابل اطمینان باشد. هدف از پژوهش انجام شده ارائه یک روش طبقه بندی هوشمند، سریع و قابل اطمینان جهت تشخیص میزان رسیدگی میوه پاپایا در سه سطح نارس، نمیه رسیده و رسیده میباشد.تعدادکل تصاویر مورد استفاده در این مقاله 300 تصویر می باشد که برای هر کدام از سطوح تعداد 100 تصویر جمع آوری گردیده است.در این پژوهش استفاده از دو رویکرد یادگیری ماشین و یادگیری انتقالی برای طبقه بندی وضعیت میزان رسیدگی میوه پاپایا پیشنهاد شده است.رویکرد یادگیری ماشین شامل استفاده از سه توصیف گر ویژگی و سه طبقه بندی کننده مختلف می باشدکه عبارت انداز: الگوریتم دو دویی محلی (LBP)، ماتریس هم رخداد سطح خاکستری (GLCM)،هیستوگرام گرادیان های جهت دار(HOG)، الگوریتم طبقه بندیk- نزدیک ترین همسایه(KNN)، ماشین بردار پشتیبان(SVM)، و الگوریتم طبقه بندی کننده بیزی ساده (Naïve Bayes). روشهای یادگیری انتقالی شامل استفاده از شش مدل یاد گیری عمیق از پیش آموزش داده شده Alexnet,Googlenet,Resnet101,Resnet50,Resnet18,VGG19 می باشد.طبقه بندیکننده KNN با استفاده از توصیف گر ویژگی HOG توانسته است به صحت4/95 درصد و زمان آموزش 3:52 ثانیه دست پیدا کند.طبقه بندی کننده مبتنی بر رویکرد یادگیری انتقالی VGG19 با بدست آوردن صحت 100 درصدی و زمان آموزش 10:42 ثانیه توانست عملکرد بهتری را در میان سایر شبکه های یادگیری عمیق ثبت کند.دو روش طبقه بندی با استفاده از روش های یادگیری ماشین و یادگیری انتقالی توانستهاند هر کدام صحت 4/95، و 100 درصدی را بدست بیاورند که به ترتیب 7/0 و 6 درصد بیشتر از روشهای پیشنهادی موجود می باشد.