ارائه مدلی جهت اعتبارسنجی مدل بهینهسازی سبد سرمایهگذاری چند دورهای با رویکرد کنترل ورشکستگی
الموضوعات :snoor modaresi 1 , farshid kheirollah 2 , mehrdad ghanbari 3 , babak jamshidinavid 4
1 - Department of accounting , Kermanshah Branch, Islamic Azad University ,Kermanshah, Iran.
2 - Department of accounting, Razi University, Kermanshah, Iran
3 - Department of accounting , Kermanshah Branch, Islamic Azad University ,Kermanshah, Iran
4 - Department of accounting , Kermanshah Branch, Islamic Azad University ,Kermanshah, Iran.
الکلمات المفتاحية: کنترل ورشکستگی, ارزش مورد انتظار سرمایهگذار, بهینه سازی پرتفوی چند دورهای, ریسک انباشته, عدم قطعیت بازده پرتفوی,
ملخص المقالة :
در این پژوهش به ارائه یک مدل ریاضی برای بهینهسازی سبد اوراق بهادار چند دورهای با رویکرد کنترل ورشکستگی پرداختهشده است. اهداف بهینهسازی سبد اوراق بهادار چند دورهای:1- بیشینهسازی ارزش خروجی مورد انتظار سرمایهگذار 2- کمینه کردن ریسک انباشته 3- کمینه کردن عدم اطمینان بازدههای سبد اوراق بهادار در طول دوره سرمایهگذاری در نظر گرفتهشده است که دستیابی به این سه هدف تحت تأثیر دو محدودیت کنترل ورشکستگی و حداکثر و حداقل تعدیلات مقادیر سرمایهگذاری در طول دوره سرمایهگذاری بررسیشده است. الگوریتم ترکیبی بهینهسازی ازدحام ذرات ، بهعنوان راهحل پیشنهادشده برای حل مدل در نظر گرفتهشده است و نمونهای عملی برای نشان دادن کاربرد مدل پیشنهادشده، ارائه گردیده است که شامل سبد اوراق بهاداری با 17 نوع سهام مختلف از شرکتهای پذیرفتهشده در بورس اوراق بهادار تهران بوده است که برای یک دوره سهساله از سال 1393 تا سال 1395 بازده روزانه سهام این شرکتها بهعنوان ورودی مدل مورداستفاده قرارگرفته است. با استفاده از جدول تحلیل حساسیت، 3 حالت مختلف برای وزنهای اهداف بهینهسازی سبد اوراق بهادار چند دورهای تعیینشده است. درنهایت حالتی از سرمایهگذاری که سرمایهگذار به هر سه هدف بهینهسازی وزن برابر میدهد، مناسبترین حالت برای بهینهسازی سبد اوراق بهادار چند دورهای بوده است. بهمنظور اعتبارسنجی الگوریتم طراحیشده برای حل مدل، نتایج بهدستآمده با دو الگوریتم دیگر مقایسه شده است. نتایج تجربی نشان داده است که الگوریتم پیشنهادشده توسط این پژوهش برای حل مدل، نسبت به دو الگوریتم مقایسهای، مناسبتر بوده است.
1-Alimi, A, & Zandieh, M & Amiri,M .(2012).Multi-objective portfolio optimization of mutual funds under downside risk measure using fuzzy theory, Int. J. Ind. Eng. Computr. 3(1): 859–872.
2-Oysu, C & Bingul, Z. (2009). Application of heuristic and hybrid-GASA algorithms to tool-path optimization problem for minimizing airtime during machining, Eng. Appl. Artif.Intell. 22 (3):389–396.
3-Li, C.J& Li, Z.F .(2012). Multi-period portfolio optimization for asset-liability management with bankrupt control, Appl. Math. Comput, 218(5): 11196–11208.
4-Goldberg, D.E.(1989). Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, 32(7):354-378.
5-Li, D .(2000). Optimal dynamic portfolio selection: multiperiod mean-variance formulation, Math. Finance, 10(7): 387–406.
6-Calafiore, G.C. (2008). Multi-period portfolio optimization with linear control policies, Automatica, 44(20): 2463–2473.
7-Zimmermann, H.J. (1978). Fuzzy programming and linear programming with several objective functions, Fuzzy Sets Syst, 1(3): 45–55.
8-Kennedy, J &. Eberhart, R.C.(1995). Particle swarm optimization, in: Proceedings of the IEEE Conference on Neural Networks, IV, Poscataway, NJ, 12(4):1942–1948.
9-Tsai, J.T & Chou, J.H& Liu, T.K(2006).Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm, IEEE Trans. Neural Netw, 17(8): 69–80.
10-Zadeh, L.A. (1965) Fuzzy sets, Inf. Control, 338–353
Markowitz, H, (1952). Portfolio selection. The journal of finance, 7(1), 77-91.
11-Gharakhani M &. Sadjadi, S.J. (2013).A fuzzy compromise programming approach for the Black-Litterman portfolio selection model, Decis. Sci. Lett, 5(1): 11–22.
12-Hakansson, N. (1971). Multi-period mean-variance analysis: toward a general theory of portfolio choice, J. Financ, 26(12): 857–884.
13-Li, P.K & Liu, B.D(2008). Entropy of credibility distributions for fuzzy variables, IEEE Trans. Fuzzy Syst, 16(5): 123–129.
14- Rahnamay Roodposhty.F & Chavoshi,K & Ebrahim.S(2013).Optimization of portfolio Constituted from mutual funds of Tehran stock exchange using genetic algorithm, Journal Management System, 3(12):217-232.
15-Yan, W & Miao, R.&. Li, S.R. (2007). Multi-period semi-variance portfolio selection: model and numerical solution, Appl. Math. Comput, 194 (23): 128–134.
16-Li, X.&. Zhou, X.Y & Lim, A.E.B.(2002). Dynamic mean-variance portfolio selection with no-shorting constraints, SIAM J. Control Opt, 40(9): 1540–1555.
17-Zhang, Y.J & Liu. (2014).Credibilitic mean-variance model for multi-period portfolio selection problem with risk control, OR Spectr, 36(14): 113–132.
18-Zhou, A.E.B & Lim. (2004). Dynamic mean-variance portfolio selection with no-shorting constraints, SIAM J. Control Opt, 40(20): 1540–1555.
_||_1-Alimi, A, & Zandieh, M & Amiri,M .(2012).Multi-objective portfolio optimization of mutual funds under downside risk measure using fuzzy theory, Int. J. Ind. Eng. Computr. 3(1): 859–872.
2-Oysu, C & Bingul, Z. (2009). Application of heuristic and hybrid-GASA algorithms to tool-path optimization problem for minimizing airtime during machining, Eng. Appl. Artif.Intell. 22 (3):389–396.
3-Li, C.J& Li, Z.F .(2012). Multi-period portfolio optimization for asset-liability management with bankrupt control, Appl. Math. Comput, 218(5): 11196–11208.
4-Goldberg, D.E.(1989). Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, 32(7):354-378.
5-Li, D .(2000). Optimal dynamic portfolio selection: multiperiod mean-variance formulation, Math. Finance, 10(7): 387–406.
6-Calafiore, G.C. (2008). Multi-period portfolio optimization with linear control policies, Automatica, 44(20): 2463–2473.
7-Zimmermann, H.J. (1978). Fuzzy programming and linear programming with several objective functions, Fuzzy Sets Syst, 1(3): 45–55.
8-Kennedy, J &. Eberhart, R.C.(1995). Particle swarm optimization, in: Proceedings of the IEEE Conference on Neural Networks, IV, Poscataway, NJ, 12(4):1942–1948.
9-Tsai, J.T & Chou, J.H& Liu, T.K(2006).Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm, IEEE Trans. Neural Netw, 17(8): 69–80.
10-Zadeh, L.A. (1965) Fuzzy sets, Inf. Control, 338–353
Markowitz, H, (1952). Portfolio selection. The journal of finance, 7(1), 77-91.
11-Gharakhani M &. Sadjadi, S.J. (2013).A fuzzy compromise programming approach for the Black-Litterman portfolio selection model, Decis. Sci. Lett, 5(1): 11–22.
12-Hakansson, N. (1971). Multi-period mean-variance analysis: toward a general theory of portfolio choice, J. Financ, 26(12): 857–884.
13-Li, P.K & Liu, B.D(2008). Entropy of credibility distributions for fuzzy variables, IEEE Trans. Fuzzy Syst, 16(5): 123–129.
14- Rahnamay Roodposhty.F & Chavoshi,K & Ebrahim.S(2013).Optimization of portfolio Constituted from mutual funds of Tehran stock exchange using genetic algorithm, Journal Management System, 3(12):217-232.
15-Yan, W & Miao, R.&. Li, S.R. (2007). Multi-period semi-variance portfolio selection: model and numerical solution, Appl. Math. Comput, 194 (23): 128–134.
16-Li, X.&. Zhou, X.Y & Lim, A.E.B.(2002). Dynamic mean-variance portfolio selection with no-shorting constraints, SIAM J. Control Opt, 40(9): 1540–1555.
17-Zhang, Y.J & Liu. (2014).Credibilitic mean-variance model for multi-period portfolio selection problem with risk control, OR Spectr, 36(14): 113–132.
18-Zhou, A.E.B & Lim. (2004). Dynamic mean-variance portfolio selection with no-shorting constraints, SIAM J. Control Opt, 40(20): 1540–1555.