الگوریتم پرندگان فاخته توسعه یافته جهت حل یک مدل جدید زمان بندی ماشین و وسیله حمل
الموضوعات :
Hojat Nabovati
1
1 - Faculty member of Islamic Azad university Saveh branch
تاريخ الإرسال : 23 الإثنين , ربيع الأول, 1442
تاريخ التأكيد : 06 الثلاثاء , شوال, 1442
تاريخ الإصدار : 12 الثلاثاء , ذو القعدة, 1442
الکلمات المفتاحية:
الگوریتم پرندگان فاخته,
زمان بندی وسایل حمل و نقل,
زمان بندی ماشین,
ملخص المقالة :
در این مقاله یک مدل جدید زمان بندی ماشین با در نظر گرفتن امکان پذیری حمل، وابستگی زمان حمل به نوع کار، در نظر گرفتن زمان توقف ماشین و زمان تعمیر آن، که انطباق با محیط صنعت داشته باشد، توسعه داده شده است. برای یافتن جواب الگوریتم پرندگان فاخته چند هدفه توسعه داده شده است و جهت مقایسه و تست کارایی آن از دو الگوریتم دیگر با همان ساختار جواب استفاده شده است. نتایج بدست آمده که توسط الگوریتم جدید پرندگان فاخته چند هدفه توسعه داده شده استخراج شده است را با الگوریتم های دیگر مقایسه گردید و نتایج بدست آمده نشان دهنده برتری کیفیت جوابهای الگوریتم پرندگان فاخته چند هدفه توسعه داده شده برای حل این نوع مساله می باشد. لذا بکارگیری این مساله جدید با روش حل پیشنهادی در محیط صنعت باعت کاهش همزمان هزینه ها و افزایش سطح کیفیت و افزایش سطح خدمت رسانی به مشتریان میگردد.
المصادر:
Coello, C. A. C., Lamont, G. B., & Van Veldhuisen, D. A. (2007). Evolutionary algorithms for solving multi-objective problems, (Vol. 5, pp. 79-104). New York: Springer.
Coello, C. A. C., Pulido, G. T., & Lechuga, M. S. (2004). Handling multiple objectives with particle swarm optimization. Evolutionary Computation, IEEE Transactions on, 8(3), 256-279.
Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, & H.-P. Schwefel (Eds.), Parallel Problem Solving from Nature PPSN VI: 6th International Conference Paris, France, September 18–20, 2000 Proceedings (pp. 849-858). Berlin, Heidelberg: Springer Berlin Heidelberg.
Fan, X., He, Q., & Zhang, Y. (2015). Zone Design of Tandem Loop AGVs Path with Hybrid Algorithm. IFAC-PapersOnLine, 48(3), 869-874.
Hamed Fazlollahtabar, M. S.-M., Jaydeep Balakrishnan. (2015). Mathematical optimization for earliness/tardiness minimization in a multiple automated guided vehicle manufacturing system via integrated heuristic algorithms. In Robotics and Autonomous Systems. 72, 131-138.
Heger, J., & Voss, T. (2018). Optimal scheduling of AGVs in a reentrant blocking job-shop. Procedia CIRP, 67, 41-45.
Jolai, F., Asefi, H., Rabiee, M., & Ramezani, P. (2013). Bi-objective simulated annealing approaches for no-wait two-stage flexible flow shop scheduling problem. Scientia Iranica, 20(3), 861-872.
Karimi, N., Zandieh, M., & Karamooz, H. R. (2010). Bi-objective group scheduling in hybrid flexible flowshop: A multi-phase approach. Expert Systems with Applications, 37(6), 4024-4032. doi:http://dx.doi.org/10.1016/j.eswa.2009.09.005.
Liu, Y., Ji, S., Su, Z., & Guo, D. (2019). Multi-objective AGV scheduling in an automatic sorting system of an unmanned (intelligent) warehouse by using two adaptive genetic algorithms and a multi-adaptive genetic algorithm. PloS one, 14(12), e0226161.
Maghsoudlou, H., Afshar-Nadjafi, B., & Niaki, S. T. A. (2016). A multi-objective invasive weeds optimization algorithm for solving multi-skill multi-mode resource constrained project scheduling problem. Computers & Chemical Engineering, 88, 157-169. doi:http://dx.doi.org/10.1016/j.compchemeng.2016.02.018
Naderi, B., Fatemi Ghomi, S., Aminnayeri, M., & Zandieh, M. (2011). Scheduling open shops with parallel machines to minimize total completion time. Journal of Computational and Applied Mathematics, 235(5), 1275-1287.
Nouri, H. E., Driss, O. B., & Ghédira, K. (2016). Hybrid metaheuristics for scheduling of machines and transport robots in job shop environment. Applied Intelligence, 1-21. doi:10.1007/s10489-016-0786-y.
Rahman, H. F., & Nielsen, I. (2019). Scheduling automated transport vehicles for material distribution systems. Applied Soft Computing, 82, 105552.
Rahman Humyun, F., Janardhanan Mukund, N., & Nielsen, P. (2020). An integrated approach for line balancing and AGV scheduling towards smart assembly systems. Assembly Automation, 40(2), 219-234. doi:10.1108/AA-03-2019-0057.
Rao, R., & Kalyankar, V. (2011). Parameters optimization of advanced machining processes using TLBO algorithm. EPPM, Singapore, 20, 21-31.
Rao, R. V., Savsani, V. J., & Vakharia, D. (2012). Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems. Information Sciences, 183(1), 1-15.
Umar, U. A., Ariffin, M. K. A., Ismail, N., & Tang, S. H. (2015). Hybrid multiobjective genetic algorithms for integrated dynamic scheduling and routing of jobs and automated-guided vehicle (AGV) in flexible manufacturing systems (FMS) environment. The International Journal of Advanced Manufacturing Technology, 81(9), 2123-2141. doi:10.1007/s00170-015-7329-2.
Zeng, C., Tang, J., & Yan, C. (2014). Scheduling of no buffer job shop cells with blocking constraints and automated guided vehicles. Applied Soft Computing, 24, 1033-1046.
Zhao, X., Liu, H., Lin, S., & Chen, Y. (2020). Design And Implementation Of A Mu+6302ltiple Agv Scheduling Algorithm For A Job-Shop. International Journal of Simulation Modelling (IJSIMM), 19(1).
Zhong, M., Yang, Y., Dessouky, Y., & Postolache, O. (2020). Multi-AGV scheduling for conflict-free path planning in automated container terminals. Computers & Industrial Engineering, 142, 106371. doi:https://doi.org/10.1016/j.cie.2020.106371.
_||_
Coello, C. A. C., Lamont, G. B., & Van Veldhuisen, D. A. (2007). Evolutionary algorithms for solving multi-objective problems, (Vol. 5, pp. 79-104). New York: Springer.
Coello, C. A. C., Pulido, G. T., & Lechuga, M. S. (2004). Handling multiple objectives with particle swarm optimization. Evolutionary Computation, IEEE Transactions on, 8(3), 256-279.
Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, & H.-P. Schwefel (Eds.), Parallel Problem Solving from Nature PPSN VI: 6th International Conference Paris, France, September 18–20, 2000 Proceedings (pp. 849-858). Berlin, Heidelberg: Springer Berlin Heidelberg.
Fan, X., He, Q., & Zhang, Y. (2015). Zone Design of Tandem Loop AGVs Path with Hybrid Algorithm. IFAC-PapersOnLine, 48(3), 869-874.
Hamed Fazlollahtabar, M. S.-M., Jaydeep Balakrishnan. (2015). Mathematical optimization for earliness/tardiness minimization in a multiple automated guided vehicle manufacturing system via integrated heuristic algorithms. In Robotics and Autonomous Systems. 72, 131-138.
Heger, J., & Voss, T. (2018). Optimal scheduling of AGVs in a reentrant blocking job-shop. Procedia CIRP, 67, 41-45.
Jolai, F., Asefi, H., Rabiee, M., & Ramezani, P. (2013). Bi-objective simulated annealing approaches for no-wait two-stage flexible flow shop scheduling problem. Scientia Iranica, 20(3), 861-872.
Karimi, N., Zandieh, M., & Karamooz, H. R. (2010). Bi-objective group scheduling in hybrid flexible flowshop: A multi-phase approach. Expert Systems with Applications, 37(6), 4024-4032. doi:http://dx.doi.org/10.1016/j.eswa.2009.09.005.
Liu, Y., Ji, S., Su, Z., & Guo, D. (2019). Multi-objective AGV scheduling in an automatic sorting system of an unmanned (intelligent) warehouse by using two adaptive genetic algorithms and a multi-adaptive genetic algorithm. PloS one, 14(12), e0226161.
Maghsoudlou, H., Afshar-Nadjafi, B., & Niaki, S. T. A. (2016). A multi-objective invasive weeds optimization algorithm for solving multi-skill multi-mode resource constrained project scheduling problem. Computers & Chemical Engineering, 88, 157-169. doi:http://dx.doi.org/10.1016/j.compchemeng.2016.02.018
Naderi, B., Fatemi Ghomi, S., Aminnayeri, M., & Zandieh, M. (2011). Scheduling open shops with parallel machines to minimize total completion time. Journal of Computational and Applied Mathematics, 235(5), 1275-1287.
Nouri, H. E., Driss, O. B., & Ghédira, K. (2016). Hybrid metaheuristics for scheduling of machines and transport robots in job shop environment. Applied Intelligence, 1-21. doi:10.1007/s10489-016-0786-y.
Rahman, H. F., & Nielsen, I. (2019). Scheduling automated transport vehicles for material distribution systems. Applied Soft Computing, 82, 105552.
Rahman Humyun, F., Janardhanan Mukund, N., & Nielsen, P. (2020). An integrated approach for line balancing and AGV scheduling towards smart assembly systems. Assembly Automation, 40(2), 219-234. doi:10.1108/AA-03-2019-0057.
Rao, R., & Kalyankar, V. (2011). Parameters optimization of advanced machining processes using TLBO algorithm. EPPM, Singapore, 20, 21-31.
Rao, R. V., Savsani, V. J., & Vakharia, D. (2012). Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems. Information Sciences, 183(1), 1-15.
Umar, U. A., Ariffin, M. K. A., Ismail, N., & Tang, S. H. (2015). Hybrid multiobjective genetic algorithms for integrated dynamic scheduling and routing of jobs and automated-guided vehicle (AGV) in flexible manufacturing systems (FMS) environment. The International Journal of Advanced Manufacturing Technology, 81(9), 2123-2141. doi:10.1007/s00170-015-7329-2.
Zeng, C., Tang, J., & Yan, C. (2014). Scheduling of no buffer job shop cells with blocking constraints and automated guided vehicles. Applied Soft Computing, 24, 1033-1046.
Zhao, X., Liu, H., Lin, S., & Chen, Y. (2020). Design And Implementation Of A Mu+6302ltiple Agv Scheduling Algorithm For A Job-Shop. International Journal of Simulation Modelling (IJSIMM), 19(1).
Zhong, M., Yang, Y., Dessouky, Y., & Postolache, O. (2020). Multi-AGV scheduling for conflict-free path planning in automated container terminals. Computers & Industrial Engineering, 142, 106371. doi:https://doi.org/10.1016/j.cie.2020.106371.