کاربرد الگوریتمهای مختلف یادگیری در پیشبینی قیمت سهام با استفاده از شبکه عصبی
الموضوعات :رضا کیانی ماوی 1 , کامران صیادی نیک 2
1 - استادیار، دانشگاه آزاد اسلامی، واحد قزوین، گروه مدیریت، قزوین، ایران (عهده دار مکاتبات)
2 - کارشناس ارشد، دانشگاه آزاد اسلامی، واحد قزوین، گروه مدیریت بازرگانی، قزوین، ایران
الکلمات المفتاحية: پیشبینی, شبکه عصبی, یادگیری شبکه عصبی, بازار بورس, پیشبینی قیمت سهام, شرکت ملی صنایع مس ایران,
ملخص المقالة :
پیشبینی قیمت سهام یکی از موضوعهای مهم مالی است، چرا که دادههای قیمت سهام دارای تغییر پذیری زیاد، پیچیدگی، دینامیک و آشوبگونه است،بنابراین ارتباط نامشخص بین قیمت سهام و عوامل مؤثر کاملا پویا است. بنابراین مسأله پیشبینی قیمت سهام تنها بوسیله یک برنامه کامپیوتری کاردشواری است.در این تحقیق، ابتدا بوسیله آزمون گردش، امکان پیشبینی قیمت سهام شرکت صنایع ملی مس ایران بررسی گردید. سپس رابطه همبستگی هشتبرای پیشبینی یک روز بعد قیمت سهام با الگوریتم یادگیری لونبرگ- MLP متغیر بنیادی و فنی مورد بررسی قرارگرفت. سپس از شبکهی عصبی0/ استاندارد آموزش داده شد که نرخ یادگیری 3 BP 6 با الگوریتم -5- یعنی 1 MLP مارکوارت استفاده شد. پس از آن ساختار بهینه شبکه عصبیاستاندارد به مینیممهای محلی محاسبه گردید و در آخر برای رهایی از BP بهترین عملکرد را داشته است و برای این نرخ یادگیری حساسیت الگوریتماستاندارد همراه با مومنتم استفاده شده است. نتایج بدست آمده نشان داد که پیشبینی بوسیله BP این حساسیت به مینیممهای محلی از الگوریتماستاندارد می باشد. BP استاندارد همراه با مومنتم بهتر از BP الگوریتم