Electrochemical properties of iron oxide nanoparticles as an anode for Li-ion batteries
الموضوعات :Mohammad Golmohammad 1 , Farhad Golestanifard 2 , Alireza Mirhabibi 3
1 - School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands
2 - School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
3 - School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
Institute for Materials Research (IMR) , University of Leeds, Leeds, United Kingdom
الکلمات المفتاحية: Nanoparticles, Thermal decomposition, Iron oxide, Li-ion battery, anode,
ملخص المقالة :
The synthesis of iron oxide nano-particles by direct thermal decomposition was studied. Simultaneous thermal analysis and Fourier transform infrared spectroscopy results confirmed the formation of iron-urea complex, and disclosed iron oxide formation mechanism. Calcination of the iron-urea complex at 200°C and 250°C for 2 hrs. resulted in the formation of maghemite along with hematite as a second phase. X-ray diffraction results revealed that increment of iron-urea complex calcination temperature led to the augmentation of hematite to maghemite ratio. Field emission scanning electron microscopy and transmission electron microscopy results showed that the average particle size was around 38nm for sample calcined at 250°C for 2 hrs. The anode body was doctor bladed using primary powder with polyvinylidene difluoride and graphite. Galvanostatic charge–discharge cycling showed a reversible capacity of 483 mAh g-1 at 100 mA g−1 current density. The reason for this competent performance was thought to be dependent upon the particle sizes.
[1] P. Guardia, N. Pérez, A. Labarta, and X. Batlle, “Controlled synthesis of iron oxide nanoparticles over a wide size range”, Langmuir, vol. 26, 2010, pp. 5843–5847.
[2] M. Mahdavi, M. Bin Ahmad, M. J. Haron, F. Namvar, B. Nadi, M. Z. A. Rahman, and J. Amin, “Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications”, Molecules, vol. 18, 2013, pp. 7533–7548.
[3] R. Bonelli, S. Albonetti, V. Morandi, L. Ortolani, P. M. Riccobene, S. Scirè, and S. Zacchini, “Design of nano-sized FeOx and Au/FeOx catalysts supported on CeO2 for total oxidation of VOC,” Appl. Catal. A Gen., vol. 395, 2011, pp. 10–18.
[4] F. Mou, J. Guan, W. Shi, Z. Sun, and S. Wang, “Oriented contraction: a facile nonequilibrium heat-treatment approach for fabrication of maghemite fiber-in-tube and tube-in-tube nanostructures”, Langmuir, vol. 26, 2010, pp. 15580–15585.
[5] E. Ghasemi, A. Mirhabibi, and M. Edrissi, “Synthesis and rheological properties of an iron oxide ferrofluid”, J. Magn. Magn. Mater., vol. 320, 2008, pp. 2635–2639.
[6] S. Charles, “The preparation of magnetic fluids”, Hand book of magnetic materials, Springer-Verlag Berlin Heidelberg, 2002, pp. 3–18.
[7] Y. Wu, P. Zhu, and M. Reddy, “Maghemite Nanoparticles on Electrospun CNFs Template as Prospective Lithium-Ion Battery Anode”, ACS Appl. Mater. Interfaces, vol. 6, 2014, pp. 1951–1958.
[8] O. Vargas, Á. Caballero, and J. Morales, “Enhanced Electrochemical Performance of Maghemite/Graphene Nanosheets Composite as Electrode in Half and Full Li–Ion Cells”, Electrochim. Acta, vol. 130, 2014, pp. 551–558.
[9] M. Valvo, E. García-Tamayo, U. Lafont, and E. M. Kelder, “Direct synthesis and coating of advanced nanocomposite negative electrodes for Li-ion batteries via electrospraying”, J. Power Sources, vol. 196, pp. 10191–10200.
[10] D. Larcher, C. Masquelier, D. Bonnin, Y. Chabre, V. Masson, J.-B. Leriche, and J.-M. Tarascon, “Effect of Particle Size on Lithium Intercalation into α-Fe[sub 2]O[sub 3]”, J. Electrochem. Soc., vol. 150, 2003, pp. A133-A139.
[11] J. Liu, W. Zhou, L. Lai, H. Yang, S. Hua Lim, Y. Zhen, T. Yu, Z. Shen, and J. Lin, “Three dimensionals α-Fe2O3/polypyrrole (Ppy) nanoarray as anode for micro lithium ion batteries”, Nano Energy, vol. 2, 2013, pp. 726–732.
[12] Y. C. Dong, R. G. Ma, M. Jun Hu, H. Cheng, C. K. Tsang, Q. D. Yang, Y. Yang Li, and J. A. Zapien, “Scalable synthesis of Fe3O4 nanoparticles anchored on graphene as a high-performance anode for lithium ion batteries”, J. Solid State Chem., vol. 201, 2013, pp. 330–337.
[13] L. Shi, Y. D. He, X. H. Xia, Z. M. Jian, and H. B. Liu, “High Rate Capability of Fe / FeO / Fe 3 O 4 Composite as Anode Material for Lithium-Ion Batteries”, J. Iran Chem. Soc., vol. 7, 2010, pp. 721–726.
[14] M. Golmohammad, A. Mirhabibi, F. Golestanifard, E. M. Kelder, “Optimizing synthesis of maghemite nanoparticles as an anode for Li-ion batteries by exploiting design of experiment”, J. Electron. Mater. Forthcoming (2015).
[15] M. Y. Li, Y. Wang, C. L. Liu, H. Gao, W.S. Dong, “Iron oxide/carbon microsphere lithium-ion battery electrode with high capacity and good cycling stability”, Electrochim. Acta, vol. 67, 2012, pp. 187- 193.
[16] Y. NuLi, P. Zhang, Z. Guo, P. Munroe, and H. Liu, “Preparation of α-Fe2O3 submicro-flowers by a hydrothermal approach and their electrochemical performance in lithium-ion batteries”, Electrochim. Acta, vol. 53, 2008, pp. 4213–4218.
[17] O. Horner, S. Neveu, S. Montredon, J.-M. Siaugue, and V. Cabuil, “Hydrothermal synthesis of large maghemite nanoparticles: influence of the pH on the particle size”, J. Nanoparticle Res., vol. 11, 2009, pp. 1247–1250.
[18] J. Vidal-Vidal, J. Rivas, and M. a. López-Quintela, “Synthesis of monodisperse maghemite nanoparticles by the microemulsion method”, Colloids Surfaces A Physicochem. Eng. Asp., vol. 288, 2006, pp. 44–51.
[19] T. Ahn, J. H. Kim, H.-M. Yang, J. W. Lee, and J.-D. Kim, “Formation Pathways of Magnetite Nanoparticles by Coprecipitation Method”, J. Phys. Chem. C, vol. 116, 2012, pp. 6069–6076.
[20] S. J. Lee, J. R. Jeong, S. C. Shin, J. C. Kim, and J. D. Kim, “Synthesis and characterization of superparamagnetic maghemite nanoparticles prepared by coprecipitation technique”, J. Magn. Magn. Mater., vol. 282, 2004, pp. 147–150.
[21] S. Sun, and H. Zeng, “Size-controlled synthesis of magnetite nanoparticles”, J. Am. Chem. Soc., vol. 124, 2002, pp. 8204–8205.
[22] S. Asuha, S. Zhao, H. Y. Wu, L. Song, and O. Tegus, “One step synthesis of maghemite nanoparticles by direct thermal decomposition of Fe – urea complex and their properties”, J. Alloys Compd., vol. 472, 2009, pp. L23–L25.
[23] T. Hyeon, S. S. Lee, J. Park, Y. Chung, and H. B. Na, “Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process”, J. Am. Chem. Soc., vol. 123, 2001, pp. 12798–801.
[24] O. Carp, L. Patron, L. Diamandescu, and A. Reller, “Thermal decomposition study of the coordination”, Thermochim. Acta, vol. 390, 2002, pp. 169–177.
[25] S. Komarneni, W. Hu, Y. D. Noh, A. Van Orden, S. Feng, C. Wei, H. Pang, F. Gao, Q. Lu, and H. Katsuki, “Magnetite syntheses from room temperature to 150°C with and without microwaves”, Ceram. Int., vol. 38, 2012, pp. 2563–2568.
[26] H. Morimoto, S. Tobishima, and Y. Iizuka, “Lithium intercalation into α-Fe2O3 obtained by mechanical milling of α-FeOOH”, J. Power Sources, vol.146, 2005, pp. 315-318.
[27] B.T. Hang, I. Watanabe, T. Doi, S. Okada, J. I. Yamaki, “Electrochemical properties of nano-sized Fe2O3-loaded carbon as a lithium battery anode”, J. Power Sources, vol. 161, 2006, pp. 1281-1287.