اثر همزمان جیبرلیک اسید وکلرورکادمیوم برروی برخی از پارامترهای فیزیولوژیکی گیاه یونجه (Medicago sativa L.)
الموضوعات :
فرزانه نجفی
1
,
زینب تقی زاده
2
1 - گروه فیزیولوژی گیاهی، دانشکده علوم زیستی، دانشگاه خوارزمی، تهران، ایران،
2 - گروه فیزیولوژی گیاهی، دانشکده علوم زیستی، دانشگاه خوارزمی، تهران، ایران،
تاريخ الإرسال : 27 الأحد , رمضان, 1442
تاريخ التأكيد : 15 الأربعاء , صفر, 1443
تاريخ الإصدار : 23 الأربعاء , ذو القعدة, 1443
الکلمات المفتاحية:
فلزات سنگین,
پارامترهای رشد,
تنش اکسیداتیو,
کلمات کلیدی: جیبرلین ها,
آنزیم ها,
ملخص المقالة :
آلودگی خاک ها به فلزات سنگین می تواند باعث مشکلات عمده زیست محیطی گردد. کادمیوم به عنوان یکی از فلزات سنگین در گیاهان تنش اکسیداتیو ایجاد می کند و برای کاهش اثرات زیان آور تنش فلزات سنگین می توان از ترکیبات مختلفی استفاده کرد. در این تحقیق اثر غلظت های مختلف کادمیوم کلرید( 0 ، 25 و 50 میکرومولار) و هورمون جیبرلیک اسید(صفر ، 5 و 10 میکرومولار) بر روی برخی پارامترهای فیزیولوژیکی گیاه یونجه مورد بررسی قرار گرفت. پس از کاشت بذر گیاه یونجه در گلدان جاوی ماسه مرطوب شده با آب مقطر و ضد عفونی شده انتقال داده شد و با محلول هوگلند کامل آبیاری گردید. سپس گیاهان 22 روزه تحت تیمارهای مختلف کلرورکادمیوم و هورمون جیبرلین قرار گرفتند. پس از تیماردهی(هرسه روز یک بار) گیاهان به منظور انجام برخی آنالیزهای فیزیولوژیکی برداشت شدند. نتایج نشان داد که با افزایش غلظت کلرورکادمیوم در محلول غذایی هوگلند پارامترهای رشد، محتوای رنگیزهها ، میزان پروتئین کل و فعالیت آنزیم گایاکول پراکسیداز کاهش و مقدار پرولین، فعالیت آنزیم های کاتالاز و سوپراکسید دیسموتاز افزایش پیدا کردند. در حالیکه در گیاهان تحت تیمار همزمان جیبرلیک اسید و کلرورکادمیوم در مقایسه با گیاهان تحت تیمار کلرورکادمیوم پارامترهای رشد، محتوای رنگیزه ها، میزان پروتئین کل افزایش نشان داد اما فعالیت آنزیم های آنتی اکسیدان و مقدار پرولین کاهش یافت. کادمیوم موجب تخریب پروتئین ها، فسفولیپیدها و تغییر ماده ژنتیک سلول ها می شود که نتیجه آن اثرات مخربی است که به گیاه وارد می شود. این یافته ها نشان دهنده اثر بهبود دهنده ی جیبرلین وافزایش مقاومت گیاه به تنش کادمیوم می باشد.
المصادر:
Abbasi, A., Maleki, A., babaei, F., safari, and rangin, A. (2022). The effect of zinc sulfate and gibberellic acid on gas exchange and white bean (Phaseolus vulgaris)performance under drought stress. Journal of Plant Environmental Physiology.65(1): 1-19.
Abd El-Monem, M. and Sharaf, I.I. (2009). Role of gibberellic acid in abolishing the detrimental effects of Cd and Pb on broad and lupin plants. Res Journals of Agricultural and Biological Sciences Iran. 5: 668-673.
Adams, B. (2003). Linking the xanthophyll cycle with thermal energy dissipation. Photosynthesis Research 76: 73–80, 2003.
Azevedo, A.M. (2003). Horseradish peroxidase: a valuable tool in biotechnology. Biotechnol. Annual Reviews. 9:199-247.
Bates, L.S., Waldren, R.P. and Teare, I.D.) 1973(. Rapid determination of free proline for water-stress studies. Plant and Soil .39:205–207.
Benavids, M.P., Gallego, S.M. and Tomaro, M.L. (2005). Cadmuim toxicity in plants. Braz. Journal Plant Physiology. 17: 21-34.
Bradford, M.M. (1976(. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72: 248–254.
Cance, B. and Maehly, C. (1995). Assay of catalase and peroxidase, Methods in Enzymes. 11:764-775.
Cakmak, I. (2000). Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytology, 146: 185-205
Chaffei ,C.,Gouia, H. and Ghorbel, M.H.(2003). Nitrogen metabolism in tomato plants under cadmium stress. Plant Nutrition.26:1617-1634.
Chen, X., Wang, J., Shi, Y., Zhao, M.Q. and Chi, G.Y. (2011). Effects of cadmium on growth and photosynthetic activities in pakchoi and mustard. Botanical Studies, 52: 41-46.
Colodny, L.R., J, A.M. and Montgomery, A. (2001). Houston M. The role of esterin processed alfalfa saponins in reducing cholesterol. Nutraceutical Association. 3: 6–15.
Dazy, M., Jung, V. and Masfaraud, I. (2008). Ecological recovery of vegetation on a coke-factory soil: role of plant anti oxidant enzymes and possible implication in site restoration. Chemosphere. 74: 57-63.
Evans, G.C. and Hughes, A.P. (1962). Plant growth and the aerial environment on the computation of unite leaf rate. New Phytologyst. 61,322-327.
Ghaderian, S.M. and Jamali Hajiani, N. (2010). Tolerance ,uptake and accumulation of cadmium in Matthiola chenopodiifolia Fisch and C.A. Mey (Brassicaceae). Plant Biology, 1389:87-98 .
Giannopolitis, C.N. and Ries, S.K. (1977). Superoxide dismutase Occurrence in higher plant. Plant Physiology, 59: 309-314.
Hayssam, M., Manzer, A., Siddiqui, H., Mohammed, O. Mohamed, H., Al-Whaibi., Ahmed, M. and Abdullah, Al-Amri. (2012). Effects of gibberellic acid on growth and photosynthetic pigments of Hibiscus sabdariffa under salt stress. African Journal of Biotechnology. 11: 800-804.
Hegedus, A., Eradei, S. and Horvath, G. (2001). Comparative studies of H2O2 detoxifying enzyme in green and greening barely seedling cadmium stress. Plant science. 160: 1085-1093.
Hoagland, D.R and Arnon, D.I.) 1950(. The water culture method for growing plants without soil. California Agricultural Experiment Station, Circular - 347.
Khan, M.M., Gautam C., Mohamad, F., Siddiqui, M.H., Naeem, M. and Khan, M.N. (2006). Effect of gibberellic Acid Spray on Performance of Tomato. Turkish Journal of Biology, 30: 11-16.
Lee, D , Kim, Y.S. and Lee, C.B. (2001). The induction responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). Journal Plant Physiology. 158: 737-745.
Lichenthaler, H.K. (1987). Chlorophyll and carotenoid: Pigment of Photosynthetic Biomembranes, Methods in Enzymology.148: 350-382.
Maleki, A., Fathim, A. and Bahamin, S. (2020). The effect of gibberehhin hormone on yield, growth indces, and biochemical traits of corn (Zea Mays ) under drought stress. Journal of Iranian Plant Eco Physiological Research, 15(59): 1-16.
Manzer, H., Siddiqui, M.H., Whaibi, A. and Mohammed, O.B. (2010). Interactive effect of calcium and gibberellin on nickel tolerance in relation to antioxidant systems in Triticum aestivum. Journal Protoplasma. 248: 503-511.
Mishra, S. and Srivastava, S. (2006). Phytochelatin synthesis and response of antioxidant during cadmium stress in Bacopa monnieri Plant physiology Biochemistry.44: 25-37.
Palma, J.M., Sandalio, L.M. and Corpas, F. (2002). Plant proteases protein degradation and oxidative stress:role of peroxisomes. Plant Physiology Biochemistry.40:521-530.
Panou-Philtheou, H., Koukourikoupetridou, M., Bosabalidis, A. and Karataglis, S. (2002). Relation of endogenousand applied gibberellins to growth and accumulation of essential elements in aregano plants grown in copper rich soils. Advances in Horticultural Science.16:63-71.
Sandalio, L.M., Dalurzo, H.C. and Gomez, M. (2001). Cadmium-induced changes in the growth and oxidative metabolism of pea plants. Exprimental Botany. 52: 2115-2126.
Shi, G., Liu, C., Cai, Q., Liu, Q. and Hou, C. (2010). Cadmium Accumulation and Tolerance of Two Safflower Cultivars in Relation to Photosynthesis and Antioxidantive Enzymes. Bulletin of Environmental Contamination and Toxicology.85:256–263.
Thien, Q., Nguyen., V., Sesin. A., Kisiala, N. and Emery, R.J. (2021). Phytohormonal Roles in Plant Responses to Heavy Metal Stress: Implications for Using Macrophytes in Phytoremediation of Aquatic Ecosystems. Environmental Toxicology and Chemistry, 40(1): 7–22.
Van Assche, F. and Clijsters, H. (1990). Effect of metals on enzyme activity in plants. Plants Cell Environment. 13: 195-206.
Yang, X., Baligor, V.C., Mantest, D.C. and Clark, R.B. (1996). Plant tolerance to Nickel toxicity: Influx, transport and accumulation of Nickel in four species. Journal of Nutrition. 19:73-85.
_||_
Abbasi, A., Maleki, A., babaei, F., safari, and rangin, A. (2022). The effect of zinc sulfate and gibberellic acid on gas exchange and white bean (Phaseolus vulgaris)performance under drought stress. Journal of Plant Environmental Physiology.65(1): 1-19.
Abd El-Monem, M. and Sharaf, I.I. (2009). Role of gibberellic acid in abolishing the detrimental effects of Cd and Pb on broad and lupin plants. Res Journals of Agricultural and Biological Sciences Iran. 5: 668-673.
Adams, B. (2003). Linking the xanthophyll cycle with thermal energy dissipation. Photosynthesis Research 76: 73–80, 2003.
Azevedo, A.M. (2003). Horseradish peroxidase: a valuable tool in biotechnology. Biotechnol. Annual Reviews. 9:199-247.
Bates, L.S., Waldren, R.P. and Teare, I.D.) 1973(. Rapid determination of free proline for water-stress studies. Plant and Soil .39:205–207.
Benavids, M.P., Gallego, S.M. and Tomaro, M.L. (2005). Cadmuim toxicity in plants. Braz. Journal Plant Physiology. 17: 21-34.
Bradford, M.M. (1976(. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72: 248–254.
Cance, B. and Maehly, C. (1995). Assay of catalase and peroxidase, Methods in Enzymes. 11:764-775.
Cakmak, I. (2000). Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytology, 146: 185-205
Chaffei ,C.,Gouia, H. and Ghorbel, M.H.(2003). Nitrogen metabolism in tomato plants under cadmium stress. Plant Nutrition.26:1617-1634.
Chen, X., Wang, J., Shi, Y., Zhao, M.Q. and Chi, G.Y. (2011). Effects of cadmium on growth and photosynthetic activities in pakchoi and mustard. Botanical Studies, 52: 41-46.
Colodny, L.R., J, A.M. and Montgomery, A. (2001). Houston M. The role of esterin processed alfalfa saponins in reducing cholesterol. Nutraceutical Association. 3: 6–15.
Dazy, M., Jung, V. and Masfaraud, I. (2008). Ecological recovery of vegetation on a coke-factory soil: role of plant anti oxidant enzymes and possible implication in site restoration. Chemosphere. 74: 57-63.
Evans, G.C. and Hughes, A.P. (1962). Plant growth and the aerial environment on the computation of unite leaf rate. New Phytologyst. 61,322-327.
Ghaderian, S.M. and Jamali Hajiani, N. (2010). Tolerance ,uptake and accumulation of cadmium in Matthiola chenopodiifolia Fisch and C.A. Mey (Brassicaceae). Plant Biology, 1389:87-98 .
Giannopolitis, C.N. and Ries, S.K. (1977). Superoxide dismutase Occurrence in higher plant. Plant Physiology, 59: 309-314.
Hayssam, M., Manzer, A., Siddiqui, H., Mohammed, O. Mohamed, H., Al-Whaibi., Ahmed, M. and Abdullah, Al-Amri. (2012). Effects of gibberellic acid on growth and photosynthetic pigments of Hibiscus sabdariffa under salt stress. African Journal of Biotechnology. 11: 800-804.
Hegedus, A., Eradei, S. and Horvath, G. (2001). Comparative studies of H2O2 detoxifying enzyme in green and greening barely seedling cadmium stress. Plant science. 160: 1085-1093.
Hoagland, D.R and Arnon, D.I.) 1950(. The water culture method for growing plants without soil. California Agricultural Experiment Station, Circular - 347.
Khan, M.M., Gautam C., Mohamad, F., Siddiqui, M.H., Naeem, M. and Khan, M.N. (2006). Effect of gibberellic Acid Spray on Performance of Tomato. Turkish Journal of Biology, 30: 11-16.
Lee, D , Kim, Y.S. and Lee, C.B. (2001). The induction responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). Journal Plant Physiology. 158: 737-745.
Lichenthaler, H.K. (1987). Chlorophyll and carotenoid: Pigment of Photosynthetic Biomembranes, Methods in Enzymology.148: 350-382.
Maleki, A., Fathim, A. and Bahamin, S. (2020). The effect of gibberehhin hormone on yield, growth indces, and biochemical traits of corn (Zea Mays ) under drought stress. Journal of Iranian Plant Eco Physiological Research, 15(59): 1-16.
Manzer, H., Siddiqui, M.H., Whaibi, A. and Mohammed, O.B. (2010). Interactive effect of calcium and gibberellin on nickel tolerance in relation to antioxidant systems in Triticum aestivum. Journal Protoplasma. 248: 503-511.
Mishra, S. and Srivastava, S. (2006). Phytochelatin synthesis and response of antioxidant during cadmium stress in Bacopa monnieri Plant physiology Biochemistry.44: 25-37.
Palma, J.M., Sandalio, L.M. and Corpas, F. (2002). Plant proteases protein degradation and oxidative stress:role of peroxisomes. Plant Physiology Biochemistry.40:521-530.
Panou-Philtheou, H., Koukourikoupetridou, M., Bosabalidis, A. and Karataglis, S. (2002). Relation of endogenousand applied gibberellins to growth and accumulation of essential elements in aregano plants grown in copper rich soils. Advances in Horticultural Science.16:63-71.
Sandalio, L.M., Dalurzo, H.C. and Gomez, M. (2001). Cadmium-induced changes in the growth and oxidative metabolism of pea plants. Exprimental Botany. 52: 2115-2126.
Shi, G., Liu, C., Cai, Q., Liu, Q. and Hou, C. (2010). Cadmium Accumulation and Tolerance of Two Safflower Cultivars in Relation to Photosynthesis and Antioxidantive Enzymes. Bulletin of Environmental Contamination and Toxicology.85:256–263.
Thien, Q., Nguyen., V., Sesin. A., Kisiala, N. and Emery, R.J. (2021). Phytohormonal Roles in Plant Responses to Heavy Metal Stress: Implications for Using Macrophytes in Phytoremediation of Aquatic Ecosystems. Environmental Toxicology and Chemistry, 40(1): 7–22.
Van Assche, F. and Clijsters, H. (1990). Effect of metals on enzyme activity in plants. Plants Cell Environment. 13: 195-206.
Yang, X., Baligor, V.C., Mantest, D.C. and Clark, R.B. (1996). Plant tolerance to Nickel toxicity: Influx, transport and accumulation of Nickel in four species. Journal of Nutrition. 19:73-85.