تخفیف سمیت نانواکسید روی در گیاه دارویی گل راعی Hypericum perforatum L. با استفاده از پیشتیمار سالیسیلیکاسید و نیتروپروسایدسدیم
الموضوعات :
الهام قاسمی فر
1
,
قادر حبیبی
2
1 - گروه زیست شناسی، دانشگاه پیام نور، صندوق پستی 3697-19395تهران، ایران
2 - گروه زیست شناسی، دانشگاه پیام نور، صندوق پستی 3697-19395تهران، ایران
الکلمات المفتاحية: آنتی اکسیدانها, سالیسیلیک اسید, سمیت, گل راعی, نانوذرات اکسید روی, نیتریکاکسید,
ملخص المقالة :
در مطالعه حاضر میزان سمیت نانوذرات اکسید روی (ZnONPs) و سولفات روی (ZnSO4)در گل راعی Hypericum perforatum L. پیش-تیمار شده با اسیدسالیسیلیک و نیتروپروسایدسدیم در غلظت 1/0 میلیمولار، در قالب طرح کاملا تصادفی با سه تکرار به صورت کشت گلدانی در بستر پرلیت بررسی شد. پس از 21 روز تیمار، گیاهان برداشت شد. نتایج حاصل از تجزیه واریانس دادهها در آزمایشگاه نشان داد که اعمال 1000میلیگرم در لیتر نانوذرات اکسیدروی یا سولفاتروی سمیت بیشتری ایجاد کرد. بیشترین تاثیر در کاهش اثرات سمی نانوذرات مربوط به پیشتیمار سالیسیلیکاسید و نیتروپروسایدسدیم بود که با موفقیت مقدار شاخص تنش اکسیداتیو (مالون دی آلدهید) را کاهش داد و در نتیجه تأثیر نامطلوب روی بر دانهرستهای گل راعی را بهبود بخشید. ترکیب سالیسیلیکاسید و نیتریک اکسید، مقدار پرولین در تیمار نانوذرات اکسید روی را افزایش داد و آنتیاکسیدانهای فنل تحت تاثیر اعمال نانوذره اکسیدروی و سولفات روی، افزایش معنیدار داشت که با افزایش فعالیت آنزیم فنیلآلانین آمونیالیاز همراه بود. مقدار روی در ریشه نیز با ترکیب سالیسیلیکاسید و نیتریک اکسید، تحت تنش نانوذرات اکسیدروی افزایش یافت. در این تحقیق سعی شد با طراحی روشهای جدید، تأثیر منفی نانوذرات اکسیدروی و سولفاتروی را بر محصولات گیاهی به حداقل رساند. واژهکلیدی: آنتی اکسیدانها، سالیسیلیک اسید، سمیت، گل راعی، نانوذرات اکسید روی، نیتریکاکسید
Arif, Y., Sami, F., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salicylic acid in relation to other phytohormones in plant: A study towards physiology and signal transduction under challenging environment. Environmental and Experimental Botany. 175: 104040.
Bandyopadhyay, S., Plascencia-Villa, G., Mukherjee, A., Rico, C.M., Jose-Yacaman, M., Peralta-Videa, J.R. and Gardea-Torresdey, J.L. (2015). Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil. Science Total Environent. 515-516:60–69.
Bates, L. S., Waldren, R. P., and Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and soil, 39(1): 205-207.
Bhat, U. H., Sami, F., Siddiqui, H., Faizan, M., Faraz, A., and S. Hayat, S. (2021). Nitric Oxide Alleviates Zinc Oxide Nanoparticles-Induced Phytotoxicity in Brassica juncea. Russian Journal of Plant Physiology. 68(3):559–568.
Boominathan, R.and Doran, P.M. (2002). Ni induced oxidative stress in roots of the Ni hyperaccumlator, Alyssum bertoloni. New Phytologist. 156(2): 202-205.
Chen, J., Dou, R., Yang, Z., You, T., Gao, X., and Wang, L. (2018). Phytotoxicity and bioaccumulation of zinc oxide nanoparticles in rice (Oryza sativa L.). Plant Physiology and Biochemistry. 130: 604-612.
Cheng, Y. J., Yang, S. H., and Hsu, C. S. (2009). Synthesis of conjugated polymers for organic solar cell applications. Chemical reviews. 109(11):5868-5923.
Chikkanna, M.M., Neelagund, S.E. and Rajashekarappa, K. (2019). Green synthesis of zinc oxide nanoparticles (ZnO NPs) and their biological activity. Springer Nature Applied Sciences. 1: 1–10.
Ende, W. V. D., and Peshev, D. (2013). Sugars as antioxidants in plants. In Crop improvement under adverse conditions, pp. 285-307. Springer, New York, NY.
Faizan, M., Faraz, A., Yusuf, M., Khan, S.T.and Hayat, S. (2017). Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica. 56: 678–686.
Filippou, P., Antoniou, C., and Fotopoulos, V. (2013). The nitric oxide donor sodium nitroprusside regulates polyamine and proline metabolism in leaves of Medicago truncatula plants. Free Radical Biology and Medicine. 56: 172-183.
García-Gómez, C., Obrador, A., González, D., Babín, M., and Fernández, M. D. (2017). Comparative effect of ZnO NPs, ZnO bulk and ZnSO4 in the antioxidant defences of two plant species growing in two agricultural soils under greenhouse conditions. Science of the Total Environment. 589: 11-24.
Giannopolitis, C.N. and Ries, S.K. (1977). Superoxide dismutase: I. Occurrence in higher plants. Plant Physiology. 59(2): 309-314.
Gaschler, M.M.and Stockwell, B.R. (2017). Lipid peroxidation in cell death. Biochemical Biophysical Research. 482: 419–425.
Gomes, M. P., Duarte, D. M., Carneiro, M. M. L. C., Barreto, L. C., Carvalho, M., Soares, A. M. ... and Garcia, Q. S. (2013). Zinc tolerance modulation in Myracrodruon urundeuva plants. Plant Physiology and Biochemistry. 67:1-6.
Ghosh, M., Jana, A., Sinha, S., Jothiramajayam, M., Nag, A., Chakraborty, A., Mukherjee, A.and Mukherjee, A. (2016). Effects of ZnO nanoparticles in plants: cytotoxicity, genotoxicity, deregulation of antioxidant defenses, and cell-cycle arrest. Mutation Research: Genetic Toxicology and Environmental Mutagenesis. 807:25–32.
Habibi, G. (2019). Role of exogenous hydrogen peroxide and nitric oxide on improvement of abiotic stress tolerance in plants. In: Hasanuzzaman M, Fujita M, Oku H, Islam MT (eds) Plant tolerance to environmental stress: role of phytoprotectants, 1rd edn. CRC Press.pp. 159-174.
Habibi, G. and Hajiboland, R. (2012). Comparison of photosynthesis and antioxidative protection in Sedum album and Sedum stoloniferum (Crassulaceae) under water stress. Photosynthetica 50(4): 508-518.
Hasan, M. K., Cheng, Y., Kanwar, M. K., Chu, X. Y., Ahammed, G. J., and Qi, Z. Y. (2017). Responses of plant proteins to heavy metal stress—a review. Frontiers in Plant Science, 8:1492.
Ismail, G. S. M. (2012). Protective role of nitric oxide against arsenic-induced damages in germinating mung bean seeds. Acta Physiologiae Plantarum. 34(4): 1303-1311.
Kalal, P.R.and Jajoo, A. (2021). Priming with zinc oxide nanoparticles improve germination and photosynthetic performance in wheat. Plant Physiology Biochemistry. 160: 341–351.
Kaur, R., Yadav, P., Sharma, A., Thukral, A.K., Kumar, V., Kohli, S.K. and Bhardwaj, R. (2017). Castasterone and citric acid treatment restores photosynthetic attributes in Brassica juncea L. under Cd (II) toxicity. Ecotoxicology and Environmental Safety. 145:466–475.
Kohli, S. K., Handa, N., Bali, S., Arora, S., Sharma, A., Kaur, R., and Bhardwaj, R. (2018). Modulation of antioxidative defense expression and osmolyte content by co-application of 24-epibrassinolide and salicylic acid in Pb exposed Indian mustard plants. Ecotoxicology and Environmental Safety.147:382-393.
Kolbert, Z., Barroso, J.B., Brouquisse, R., Corpas, F.J., Gupta, K.J., Lindermayr, C., Loake, G.J., Palma, J.M., Petrivalsky, M., Wendehenne, D. and Hancock J.T. (2019). A forty-year journey: the generation and roles of NO in plants. Nitric Oxide. 93:53–70.
Li, S.; Liu, J.;Wang, Y.; Gao, Y.; Zhang, Z.; Xu, J.and Xing, G.(2020). Comparative physiological and metabolomic analyses reveale d that foliar spraying with zinc oxide and silica nanoparticles modulates metabolite profiles in cucumber (Cucumis sativus L.). Food and Energy Security. 10: 269.
Lichtenthaler, H.K.and Wellburn, A.R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transacions. 11: 591-592.
Magne, C., Saladin, G.and Clement, C. (2006). Transient effect of the herbicide flazasulfuron on carbohydrate physiology in Vitis vinifera. Chemosphere. 62(4):650-657.
Molnár, Á., Papp, M., Kovács, D.Z., Bélteky, P., Oláh, D., Feigl, G., Szőllősi, R., Rázga, Z., Ördög, A., Erdei, L., Rónavári, A., Kónya, Z. and Kolbert, Z. (2020). Nitro-oxidative signaling induced by chemically synthesized zinc oxide nanoparticles (ZnONPs) in Brassica species. Chemosphere. 251:126419.
Prakash. V., Singh. V.P., Tripathi. D.K., Sharma. S.and Corpas, F.J. (2021). Nitric oxide (NO) and salicylic acid (SA): A framework for their relationship in plant development under abiotic stress. Plant Biology 23:39-49.
Pullagurala, V. L. R., Adisa, I.O., Rawat, S., Kim, B., Barrios, A.C.,Medina- Velo, I.A., Hernandez
Viezcas, J.A., Peralta-Videa, J.R. and Gardea-Torresdey, J. (2018). Finding the conditions for the beneficial use of ZnO nanoparticles towards plant, s - A review. Environmental Pollution. 241: 1175-1181.
Rizwan, M., Ali, S., Ali, B., Adrees, M., Arshad, M., Hussain, A. and Waris, A. A. (2019). Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere. 214:269-277.
Ruiz-Torres, N., Flores-Naveda, A., Barriga-Castro E.D., Camposeco-Montejo, N., Sonia Ramírez-Barrón, S., Borrego-Escalante, F., Niño-Medina, G., Hernández-Juárez, A., Garza-Alonso, C., Rodríguez-Salinas, P. and García-López J.I. (2021). Zinc Oxide Nanoparticles and Zinc Sulfate Impact Physiological Parameters and Boosts Lipid Peroxidation in Soil Grown Coriander Plants (Coriandrum sativum). Molecules. 26:1998.
Quentin, A.G., Pinkard, E.A., Ryan, M.G., Tissue, D.T., Baggett, L.S., Adams, H.D., Maillard, P., Marchand, J., Landhäusser, S.M., Lacointe. A. and Gibon, Y. (2015). Non-structural carbohydrates in woody plants compared among laboratories.Tree Physiology. 35(11):1146-65.
Samart, S., Chutipaijit, S., and Phakamas, N. (2017). Evaluating the effect of zinc oxide nanoparticles on the physiological responses of nine non-photoperiod sensitive rice cultivars. Materials Today: Proceedings. 4(5): 6430-6435.
Sidhu, G. P. S., Singh, H. P., Batish, D. R., and Kohli, R. K. (2017). Tolerance and hyperaccumulation of cadmium by a wild, unpalatable herb Coronopus didymus (L.) Sm. (Brassicaceae). Ecotoxicology and environmental safety. 135:209-215.
Sinrod, A.J.G., Avena-Bustillos, R.J., Olson, D.A., Crawford, L.M., Wang, S.C.and McHugh, T.H. (2019). Phenolics and Antioxidant Capacity of Pitted Olive Pomace Affected by Three Drying Technologies. Journal Food Science 84: 412–420.
Sharma, A., Sidhu, G.P.S., Araniti, F., Bali, A.S., Shahzad, B., Tripathi, D.K., Brestic, M., Skalicky, M. and Landi, M. (2020). The role of salicylic acid in plants exposed to heavy metals. Molecules. 25(3): 540.
Tajik, S., Zarinkamar, F., Soltani, B. M., & Nazari, M. (2019). Induction of phenolic and flavonoid compounds in leaves of saffron (Crocus sativus L.) by salicylic acid. Scientia Horticulturae. 257:108751.
Tripathi, D.K., Mishra, R.K., Singh, S., Singh, S., Vishwakarma, K., Sharma, S., Singh, V.P., Singh, P.K., Prasad, S.M., Dubey, N.K., Pandey, A.C., Shivendra, S., and Chauhan, D.K. (2017). Nitric oxide ameliorates zinc oxide nanoparticles phytotoxicity in wheat seedlings: implication of the ascorbate-glutathione cycle, Frontiers Plant Science.8:1.
Velioglu, Y.S., Mazza, G., Gao, L. and Oomah, B.D. (1998). Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of Agricultural and Food Chemistry. 46(10):4113-4117.
Wang, X., Yang, X., Chen, S., Li, Q., Wang, W. and Hou, C.(2016). Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis. Frontiers Plant Science. 6:1243.
Wang, X.P., Li, Q.Q., Pei, Z.M. and Wang, S.C. (2018). Effects of zinc oxide nanoparticles on the growth, photosynthetic traits and antioxidative enzymes in tomato plants. Biologia plantarum. 62(4):801-808.
Wu, Q., Su, N., Zhang, X., Liu, Y., Cui, J.and Liang, Y. (2016). Hydrogen peroxide, nitric oxide and UV Resistance Locus and interact to mediate UV-B-induced anthocyanin biosynthesis in radish sprouts. Scientific Reports 6(1):29164.
Wang, X.P., Li, Q.Q., Pei, Z.M. and Wang, S.C. (2018). Effects of zinc oxide nanoparticles on the growth, photosynthetic traits and antioxidative enzymes in tomato plants. Biologia plantarum. 62(4):801-808.
Yang, Y., Zhang, L., Huang, X., Zhou, Y., Quan, Q., Li, Y., and Zhu, X. (2020). Response of photosynthesis to different concentrations of heavy metals in Davidia involucrata. PLOS One. 15(3): e0228563.
Zouari, M., Ahmed, C. B., Elloumi, N., Bellassoued, K., Delmail, D., Labrousse, P., Abdallah, F.B. and Rouina, B. B. (2016). Impact of proline application on cadmium accumulation, mineral nutrition and enzymatic antioxidant defense system of Olea europaea L. Chemlali exposed to cadmium stress. Ecotoxicology and Environmental Safety. 128: 195-205.
Zoufan, P., Baroonian, M .and Zargar, B. (2020). ZnO nanoparticles-induced oxidative stress in Chenopodium murale L, Zn uptake, and accumulation under hydroponic culture. Environmental Science and Pollution Research .27(10): 11066–11078.
Zucker, M. (1965). Induction of phenylalanine deaminase by light and its relation to chlorogenic acid synthesis in potato tuber tissue. Plant Physiology. 40(5): 779-784.