بررسی پاسخهای مورفو-فیزیولوژیکی گیاه دارویی Cymbopogon citratus (DC.) Stapf به کاربرد کودهای شیمیایی و زیستی تحت تنش شوری در اقلیمهای فارس و تهران
الموضوعات :مصطفی صالحی 1 , فاطمه نخعی 2 , سید غلامرضا موسوی 3 , رضا برادران 4
1 - گروه باغبانی، واحد بیرجند، دانشگاه ازاد اسلامی، بیرجند، ایران
2 - گروه باغبانی، واحد بیرجند، دانشگاه ازاد اسلامی، بیرجند، ایران
3 - مرکز تحقیقات کشاورزی، گیاهان دارویی و علوم دامی، واحد بیرجند، دانشگاه آزاد اسلامی، بیرجند، ایران
4 - مرکز تحقیقات کشاورزی، گیاهان دارویی و علوم دامی، واحد بیرجند، دانشگاه آزاد اسلامی، بیرجند، ایران
الکلمات المفتاحية: اسانس, نیتروکسین, عملکرد برگ, رنگیزههای فتوسنتزی, قارچ مایکوریزا, بیوسولفور,
ملخص المقالة :
تغذیه گیاه از منابع مختلف کودی یکی از عوامل مهم به زراعی در گیاهان تحت تنش محسوب می شود. پژوهش حاضر به منظور مطالعه پاسخ های مورفو-فیزیولوژیکی گیاه دارویی علف لیمو (Cymbopogon citratus (DC.) Stapf) به کاربرد منابع مختلف کودی (شاهد، NPK، نیتروکسین، قارچ مایکوریزا و بیوسولفور) تحت تنش شوری آب آبیاری (صفر، 100 و 200 میلی مولار) در دو اقلیم (فارس و تهران) به صورت اسپلیت پلات فاکتوریل در قالب طرح بلوک های کامل تصادفی در سه تکرار در سال زراعی 1400-1399 مورد اجرا قرار گرفت. صفات رشدی، عملکردی و همچنین صفات فیزیولوژیکی از جمله محتوای رنگیزه های فتوسنتزی و پرولین و صفات کیفی (درصد و عملکرد اسانس) اندازه گیری شدند. نتایج نشان داد که شوری (200 میلیمولار) اثرات منفی بر پارامترهای رشدی و عملکردی (وزن خشک و حجم ریشه، ارتفاع بوته، تعداد برگ و عملکرد گیاه) داشت. بیشترین عملکرد گیاه در شوری صفر و 100 میلی مولار به ترتیب با میانگین 4183/1 و 4191/9 کیلوگرم در هکتار در منطقه فارس بدست آمد. در بین تیمارهای کودی، از نظر عملکرد گیاه تفاوتی وجود نداشت و همگی منجر به افزایش عملکرد در مقایسه با تیمار شاهد شدند. استفاده از کود زیستی نیتروکسین تحت شرایط بدون تنش در منطقه فارس منجر به ایجاد بیشترین محتوای کلروفیل کل و a شد که در مقایسه با شاهد به ترتیب افزایش 51/3 و 47/0 درصدی داشتند. تنش شوری (200 میلی مولار) و استفاده از بیوسولفور در منطقه تهران منجر به بالا رفتن محتوای پرولین شد. استفاده از کود NPK و قارچ مایکوریزا تحت تنش شدید شوری در فارس منجر به افزایش 2/3 و 2/4 برابری درصد اسانس شدند. کمترین میانگین اسانس نیز در کاربرد کودهای زیستی و شیمیایی در تهران مشاهده شد. بیشترین عملکرد اسانس در کاربرد قارچ مایکوریزا در تنش شوری متوسط در فارس به دست آمد که در مقایسه با شاهد افزایش 7/2 برابری داشت. تمامی تیمارهای کودی در سطح 200 میلی مولار در فارس نیز دارای بالاترین عملکرد اسانس بودند. به طور کلی، گیاه علف لیمو از تحمل خوبی در برابر تنش شوری آب آبیاری برخوردار بود و استفاده از کودهای NPK، نیتروکسین و مایکوریزا ضمن افزایش عملکرد کمی و کیفی، منجر به تعدیل اثرات منفی ناشی از تنش شوری نیز گردید.
Abu-Dieyeh, M.H., Diab, M., and Al-Ghouti, M.A. 2017. Ecological and agriculture impacts of bakery yeast wastewater use on weed communities and crops in an arid environment. Environmental Science and Pollution Research, 24: 14957-14969.
Acharya, P., Jayaprakasha, G.K., Crosby, K.M., Jifon, J.L. and Patil, B.S. 2020. Nanoparticle-mediated seed priming improves germination, growth, yield, and quality of watermelons (Citrullus lanatus) at multi-locations in texas. Scientific Reports, 10: 1-16.
Aghighi Shahverdi, M., Omidi, H. and Tabatabaei, S.J. 2018. Plant growth and steviol glycosides as affected by foliar application of selenium, boron, and iron under NaCl stress in Stevia rebaudiana Bertoni. Industrial Crops and Products, 125: 408-415.
Akhondi, M., Dashti, M., Niakan, M. and Mahmodzadeh Akharat, H. 2021. Nano-ZnO effect on yield, quantity and quality of Salvia leriifolia benth. essential oils under salinity stress conditions. Eco-Phytochemical Journal of Medicinal Plants, 9: 91-105.
Alavi, S.A., Ghehsareh, A.M., Soleymani, A., Panahpour, E. and Mozafari, M. 2020. Pepermint (Mentha piperita L.) growth and biochemical properties affected by magnetized saline water. Ecotoxicology and Environmental Safety, 201: 110775.
Amanifar, S. and Toghranegar, Z. 2020. The efficiency of arbuscular Mycorrhiza for improving tolerance of Valeriana officinalis L. and enhancing valerenic acid accumulation under salinity stress. Industrial Crops and Products, 147: 112234.
Asghari, M., Yousefirad, M., and Masumi, A. 2016. Effects of organic fertilizers of compost and vermicompost on qualitative and quantitative triats of Lemon verbena. Journal of Medicinal Plants, 15: 63-71.
Azizi, M., Mirmostafaee, S., Bahreini, M., Arouee, H. and Oroojalian, F. 2015. Evaluation of the effect of organic manure and compost application on growth, development, essential oil content, and microbial load in valerian (Valeriana officinalis L.). Journal of Plant Productions (Agronomy, Breeding and Horticulture), 38: 1-14.
Bates, L.S., Waldren, R.P. and Teare, I. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil, 39: 205-207.
Etesami, H. and Alikhani, H.A. 2019. 'Halotolerant plant growth-promoting fungi and bacteria as an alternative strategy for improving nutrient availability to salinity-stressed crop plants. in, Saline Soil-Based Agriculture By Halotolerant Microorganisms (Springer).
Fabriki Ourang, S. and Davoodnia, B. 2018. Changes in growth characteristics and secondary metabolites in Thymus vulgaris L. under moderate salinity and drought shocks. Eco-Phytochemical Journal of Medicinal Plants, 6: 27-39.
Ghaderi, A., Noee, A., Ahmadi, K. and Saborifard, H. 2020. Evaluation the effects of Thiobacillus biological and chemical fertilizers on morphological and phytochemical characteristics of Satureja hortensis L. Eco-Phytochemical Journal of Medicinal Plants, 8: 13-29.
Ghahfarokhi, Y., Abdali Mashhadi, A., Bakhshandeh, A. and Lotfi Jalal Abadi, A. 2015. Evaluation of effect attract moisture substances and organic fertilizers on quality and quantity yield of purslane (Portulaca oleracea L.) in Ahwaz region. Journal of Plant Process and Function, 4: 87-96.
Hariadi, YC., Nurhayati, AY. and Hariyani, P. 2016. Biophysical monitoring on the effect on different composition of goat and cow manure on the growth response of maize to support sustainability. Agriculture and Agricultural Science Procedia, 9: 118-127.
Heydari-Rahni, M., Nasri, M., filizadeh, Y., Kasraei, P. and Azadi, P. 2022. Evaluation of growth, yield, and physiological responses of Valeriana officinalis L. to the application of urea, nitroxin, and phosphate Barvar-2 fertilizers. Eco-Phytochemical Journal of Medicinal Plants, 9: 73-92.
Idrees, M., Khan, MMA., Aftab, T., Naeem, M. and Hashmi, N. 2010. Salicylic acid-induced physiological and biochemical changes in lemongrass varieties under water stress. Journal of Plant Interactions, 5: 293-303.
Javadi, H., Rezvani Moghaddam, P., Rashed Mohasel, M.H. and Seghatoleslami, M.J. 2020. Evaluation of biomass yield and nitrogen and phosphorus efficiency indicators of portulaca (Portulaca oleracea L.) affected by organic, chemical and biological fertilizers. Iranian Journal of Field Crops Research, 18: 309-322.
Javan Gholiloo, M., Yarnia, M., Hassanzadeh Ghorttapeh, A., Farahvash, F. and Daneshian, A. 2020. The reaction of valerian to the application of bio-fertilizers under drought stress. Journal of Agricultural Science and Sustainable Production, 30: 59-72.
Khorasaninejad, S., Mousavi, A., Soltanloo, H., Hemmati, K. and Khalighi, A. 2010. The effect of salinity stress on growth parameters, essential oil yield and constituent of peppermint (Mentha piperita L.). World Applied Sciences Journal, 11: 1403-1407.
Kumar, A., Singh, S., Gaurav, A.K., Srivastava, S. and Verma, J.P. 2020. Plant growth-promoting bacteria: biological tools for the mitigation of salinity stress in plants. Frontiers in Microbiology, 11: 1216.
Lichtenthaler, H.K. and Buschmann, C. 2001. Chlorophylls and carotenoids: measurement and characterization by UV‐VIS spectroscopy. Current Protocols in Food Analytical Chemistry, 1: F4. 3.1-F4. 3.8.
Mahanty, T., Bhattacharjee, S., Goswami, M., Bhattacharyya, P., Das, B., Ghosh, A. and Tribedi, P. 2017. Biofertilizers: a potential approach for sustainable agriculture development. Environmental Science and Pollution Research, 24: 3315-3335.
Mahdavi Khorami, A., Masoud Sinaki, J., Amini Dehaghi, M., Rezvan, S. and Damavandi, A. 2020. Sesame (Sesame indicum L.) biochemical and physiological responses as affected by applying chemical, biological, and nano-fertilizers in field water stress conditions. Journal of Plant Nutrition, 43: 456-475.
Mirzaei, M., Ladan Moghadam, A., Hakimi, L. and Danaee, E. 2020. Plant growth promoting rhizobacteria (PGPR) improve plant growth, antioxidant capacity, and essential oil properties of lemongrass (Cymbopogon citratus) under water stress. Iranian Journal of Plant Physiology, 10: 3155-3166.
Pan, T., Liu, M., Kreslavski, V.D., Zharmukhamedov, SK., Nie, C., Yu, M., Kuznetsov, V.V., Allakhverdiev, SI. and Shabala, S. 2021. Non-stomatal limitation of photosynthesis by soil salinity. Critical Reviews in Environmental Science and Technology, 51: 791-825.
Prins, C.L., Freitas, S.d.P., Gomes, M.d.M.d.A., Vieira, I.J.C. and Gravina, G.d.A. 2013. Citral accumulation in Cymbopogon citratus plant as influenced by N6-benzylaminopurine and light intensity. Theoretical and Experimental Plant Physiology, 25: 159-165.
Shahverdi, M.A., Omidi, H. and Damalas, C.A. 2020. Foliar fertilization with micronutrients improves Stevia rebaudiana tolerance to salinity stress by improving root characteristics. Brazilian Journal of Botany, 43: 55-65.
Shahverdi, M.A., Omidi, H. and Tabatabaei, S.J. 2019. Stevia (Stevia rebaudiana Bertoni) responses to NaCl stress: Growth, photosynthetic pigments, diterpene glycosides and ion content in root and shoot. Journal of the Saudi Society of Agricultural Sciences, 18: 355-360.
Tesfaye, H., Meskelu, E. and Mohammed, M. 2017. Determination of optimal soil moisture depletion level for Lemongrass (Cymbopogon citratus L.). Irrigat Drainage Sys Eng, 6: 2-8.
Tisarum, R., Theerawitaya, C., Samphumphuang, T., Polispitak, K., Thongpoem, P., Singh, H.P. and Cha-Um, S. 2020. Alleviation of salt stress in upland rice (Oryza sativa L. ssp. indica cv. Leum Pua) using arbuscular mycorrhizal fungi inoculation. Frontiers in Plant Science, 11: 348.
Yang, R., Qin, Z., Wang, J., Zhang, X., Xu, S., Zhao, W. and Huang, Z. 2022. The interactions between arbuscular mycorrhizal fungi and trichoderma longibrachiatum enhance maize growth and modulate root metabolome under increasing soil salinity. Microorganisms, 10: 1042.
_||_