A review of the treatment of bone tumours by hyperthermia using magnetic nanoparticles
الموضوعات : Journal of NanoanalysisAthena Ehsani 1 , Rayappa Shrinivas Mahale 2 , Shika Shayegan 3 , Ali Attaeyan 4 , Atefeh Ghorbani 5 , Shamanth Vasanth 6 , Sharath P C 7 , Sheyda Shahriari 8 , Azadeh Asefnejad 9
1 - Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 - School of Mechanical Engineering, REVA University, Bengaluru, Karnataka, India
3 - Department of Pharmacy, Cyprus Health and Social Science, Guzelyurt, TRNC via Mersin 10, Turkey
4 - Faculty of Biomechanics, Department of Biomedical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
5 - Biotechnology Department,Falavarjan Branch, lslamic Azad University,Esfahan,lran
6 - School of Mechanical Engineering, REVA University, Bengaluru, Karnataka, India
7 - Department of Metallurgical and Materials Engineering, JAIN Deemed to be University Bangalore Karnataka, India
8 - Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
9 - Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
الکلمات المفتاحية: Magnetic resonance imaging, Pharmaceuticals application, Cancer Diagnosis, Magnetic Targeting,
ملخص المقالة :
Cancer is a fatal disease that has long plagued and damaged people. In the last two decades, many researchers have been interested in the use of magnetic nanoparticles (MNPs) in medicine and pharmaceutical application particularly in the field of cancer diagnostics and treatment. The goal of this article is to provide an overview of MNPs as well as the principles of successful techniques for delivering these nanoparticles to cancer cells. According to an examination, there are two types of active and passive techniques for delivering MNPs to cancer cells. The targeted transfer of nanoparticles to the tumour happens in the active approach, which uses specific molecular ligands of tumour cells and irradiates an external magnetic field to the tumour area, whereas the passive method penetrates the tumour due to its permeability and nanoparticle retention. MNPs offer a variety of applications in biomedicine, including targeted medication delivery to tumours, magnetic resonance imaging, and cancer treatment with hyperthermia, due to their magnetic nature and capacity to carry pharmaceuticals. The use of MNPs in medicine has led to focus on the treatment of cancer. This review indicates that a reduction in the side effects and biological damage produced by chemotherapy in patients can be obtained using MNPs.
1) Gavilan, H., Avugadda, S. K., Fernandez-Cabada, T., Soni, N., Cassani, M., Mai, B. T., & Pellegrino, T. (2021). Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chemical Society Reviews.
https://doi.org/10.1039/D1CS00427A
2) Hatamie, S., Balasi, Z. M., Ahadian, M. M., Mortezazadeh, T., Shams, F., & Hosseinzadeh, S. (2021). Hyperthermia of breast cancer tumor using graphene oxide-cobalt ferrite magnetic nanoparticles in mice. Journal of Drug Delivery Science and Technology, 65, 102680.
https://doi.org/10.1016/j.jddst.2021.102680
3) Huang, Y., Kang, Y., El-kott, A., Ahmed, A. E., Khames, A., & Zein, M. A. (2021). Decorated Cu NPs on Lignin coated magnetic nanoparticles: Its performance in the reduction of nitroarenes and investigation of its anticancer activity in A549 lung cancer cells. Arabian Journal of Chemistry, 14(8), 103299.
https://doi.org/10.1016/j.arabjc.2021.103299
4) Khandan, A., Abdellahi, M., Ozada, N., & Ghayour, H. (2016). Study of the bioactivity, wettability and hardness behaviour of the bovine hydroxyapatite-diopside bio-nanocomposite coating. Journal of the Taiwan Institute of Chemical Engineers, 60, 538-546.
https://doi.org/10.1016/j.jtice.2015.10.004
5) Karamian, E., Motamedi, M. R. K., Khandan, A., Soltani, P., & Maghsoudi, S. (2014). An in vitro evaluation of novel NHA/zircon plasma coating on 316L stainless steel dental implant. Progress in Natural Science: Materials International, 24(2), 150-156.
https://doi.org/10.1016/j.pnsc.2014.04.001
6) Karamian, E., Abdellahi, M., Khandan, A., & Abdellah, S. (2016). Introducing the fluorine doped natural hydroxyapatite-titania nanobiocomposite ceramic. Journal of Alloys and Compounds, 679, 375-383.
https://doi.org/10.1016/j.jallcom.2016.04.068
7) Najafinezhad, A., Abdellahi, M., Ghayour, H., Soheily, A., Chami, A., & Khandan, A. (2017). A comparative study on the synthesis mechanism, bioactivity and mechanical properties of three silicate bioceramics. Materials Science and Engineering: C, 72, 259-267.
https://doi.org/10.1016/j.msec.2016.11.084
8) Ghayour, H., Abdellahi, M., Ozada, N., Jabbrzare, S., & Khandan, A. (2017). Hyperthermia application of zinc doped nickel ferrite nanoparticles. Journal of Physics and Chemistry of Solids, 111, 464-472.
https://doi.org/10.1016/j.jpcs.2017.08.018
9) Kazemi, A., Abdellahi, M., Khajeh-Sharafabadi, A., Khandan, A., & Ozada, N. (2017). Study of in vitro bioactivity and mechanical properties of diopside nano-bioceramic synthesized by a facile method using eggshell as raw material. Materials Science and Engineering: C, 71, 604-610.
https://doi.org/10.1016/j.msec.2016.10.044
10) Khandan, A., & Ozada, N. (2017). Bredigite-Magnetite (Ca7MgSi4O16-Fe3O4) nanoparticles: A study on their magnetic properties. Journal of Alloys and Compounds, 726, 729-736.
https://doi.org/10.1016/j.jallcom.2017.07.288
11) Khandan, A., Jazayeri, H., Fahmy, M. D., & Razavi, M. (2017). Hydrogels: Types, structure, properties, and applications. Biomat Tiss Eng, 4(27), 143-69.
https://doi.org/10.2174/9781681085364117040007
12) Sharafabadi, A. K., Abdellahi, M., Kazemi, A., Khandan, A., & Ozada, N. (2017). A novel and economical route for synthesizing akermanite (Ca2MgSi2O7) nano-bioceramic. Materials Science and Engineering: C, 71, 1072-1078.
https://doi.org/10.1016/j.msec.2016.11.021
13) Khandan, A., Abdellahi, M., Ozada, N., & Ghayour, H. (2016). Study of the bioactivity, wettability and hardness behaviour of the bovine hydroxyapatite-diopside bio-nanocomposite coating. Journal of the Taiwan Institute of Chemical Engineers, 60, 538-546.
https://doi.org/10.1016/j.jtice.2015.10.004
14) Shayan, A., Abdellahi, M., Shahmohammadian, F., Jabbarzare, S., Khandan, A., & Ghayour, H. (2017). Mechanochemically aided sintering process for the synthesis of barium ferrite: Effect of aluminum substitution on microstructure, magnetic properties and microwave absorption. Journal of Alloys and Compounds, 708, 538-546
https://doi.org/10.1016/j.jallcom.2017.02.305
15) Heydary, H. A., Karamian, E., Poorazizi, E., Khandan, A., & Heydaripour, J. (2015). A novel nano-fiber of Iranian gum tragacanth-polyvinyl alcohol/nanoclay composite for wound healing applications. Procedia Materials Science, 11, 176-182.
https://doi.org/10.1016/j.mspro.2015.11.079
16) Khandan, A., Karamian, E., & Bonakdarchian, M. (2014). Mechanochemical synthesis evaluation of nanocrystalline bone-derived bioceramic powder using for bone tissue engineering. Dental Hypotheses, 5(4), 155.
https://doi.org/10.4103/2155-8213.140606
17) Karamian, E., Khandan, A., Kalantar Motamedi, M. R., & Mirmohammadi, H. (2014). Surface characteristics and bioactivity of a novel natural HA/zircon nanocomposite coated on dental implants. BioMed research international, 2014.
https://doi.org/10.1155/2014/410627
18) Jabbarzare, S., Abdellahi, M., Ghayour, H., Arpanahi, A., & Khandan, A. (2017). A study on the synthesis and magnetic properties of the cerium ferrite ceramic. Journal of Alloys and Compounds, 694, 800-807.
https://doi.org/10.1016/j.jallcom.2016.10.064
19) Razavi, M., & Khandan, A. (2017). Safety, regulatory issues, long-term biotoxicity, and the processing environment. In Nanobiomaterials Science, Development and Evaluation (pp. 261-279). Woodhead Publishing.
https://doi.org/10.1016/B978-0-08-100963-5.00014-8
20) Khandan, A., Ozada, N., & Karamian, E. (2015). Novel microstructure mechanical activated nano composites for tissue engineering applications. J Bioeng Biomed Sci, 5(1), 1.
21) Ghayour, H., Abdellahi, M., Bahmanpour, M., & Khandan, A. (2016). Simulation of dielectric behavior in RFeO $$ _ {3} $$3 orthoferrite ceramics (R= rare earth metals). Journal of Computational Electronics, 15(4), 1275-1283.
https://doi.org/10.1007/s10825-016-0886-2
22) Saeedi, M., Abdellahi, M., Rahimi, A., & Khandan, A. (2016). Preparation and characterization of nanocrystalline barium ferrite ceramic. Functional Materials Letters, 9(05), 1650068.
https://doi.org/10.1142/S1793604716500685
23) Khandan, A., Karamian, E., Faghih, M., & Bataille, A. (2014). Formation of AlN Nano Particles Precipitated in St-14 Low Carbon Steel by Micro and Nanoscopic Observations. Journal of Iron and Steel Research International, 21(9), 886-890.
https://doi.org/10.1016/S1006-706X(14)60157-6
24) Karamian, E. B., Motamedi, M. R., Mirmohammadi, K., Soltani, P. A., & Khandan, A. M. (2014). Correlation between crystallographic parameters and biodegradation rate of natural hydroxyapatite in physiological solutions. Indian J Sci Res, 4(3), 092-9.
https://doi.org/10.1155/2014/410627
25) Khandan, A., & Esmaeili, S. (2019). Fabrication of polycaprolactone and polylactic acid shapeless scaffolds via fused deposition modelling technology. Journal of Advanced Materials and Processing, 7(4), 16-29.
26) Saeedi, M. R., Morovvati, M. R., & Mollaei-Dariani, B. (2020). Experimental and numerical investigation of impact resistance of aluminum-copper cladded sheets using an energy-based damage model. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(6), 1-24.
https://doi.org/10.1007/s40430-020-02397-0
27) Kardan-Halvaei, M., Morovvati, M. R., & Mollaei-Dariani, B. (2020). Crystal plasticity finite element simulation and experimental investigation of the micro-upsetting process of OFHC copper. Journal of Micromechanics and Microengineering, 30(7), 075005.
https://doi.org/10.1088/1361-6439/ab8549
28) Fazlollahi, M., Morovvati, M. R., & Mollaei Dariani, B. (2019). Theoretical, numerical and experimental investigation of hydro-mechanical deep drawing of steel/polymer/steel sandwich sheets. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 233(5), 1529-1546.
https://doi.org/10.1177/0954405418780173
29) Saeedi, M. R., Morovvati, M. R., & Alizadeh-Vaghasloo, Y. (2018). Experimental and numerical study of mode-I and mixed-mode fracture of ductile U-notched functionally graded materials. International Journal of Mechanical Sciences, 144, 324-340.
https://doi.org/10.1016/j.ijmecsci.2018.06.008
30) Morovvati, M. R., & Mollaei-Dariani, B. (2018). The formability investigation of CNT-reinforced aluminum nano-composite sheets manufactured by accumulative roll bonding. The International Journal of Advanced Manufacturing Technology, 95(9), 3523-3533.
https://doi.org/10.1007/s00170-017-1205-1
31) Morovvati, M. R., & Dariani, B. M. (2017). The effect of annealing on the formability of aluminum 1200 after accumulative roll bonding. Journal of Manufacturing Processes, 30, 241-254.
https://doi.org/10.1016/j.jmapro.2017.09.013
32) Morovvati, M. R., Lalehpour, A., & Esmaeilzare, A. (2016). Effect of nano/micro B4C and SiC particles on fracture properties of aluminum 7075 particulate composites under chevron-notch plane strain fracture toughness test. Materials Research Express, 3(12), 125026.
https://doi.org/10.1088/2053-1591/3/12/125026
33) Fatemi, A., Morovvati, M. R., & Biglari, F. R. (2013). The effect of tube material, microstructure, and heat treatment on process responses of tube hydroforming without axial force. The International Journal of Advanced Manufacturing Technology, 68(1), 263-276.
https://doi.org/10.1007/s00170-013-4727-1
34) Pourmoghadam, M. N., Esfahani, R. S., Morovvati, M. R., & Rizi, B. N. (2013). Bifurcation analysis of plastic wrinkling formation for anisotropic laminated sheets (AA2024-Polyamide-AA2024). Computational materials science, 77, 35-43.
https://doi.org/10.1016/j.commatsci.2013.03.037
35) Morovvati, M. R., Mollaei-Dariani, B., & Haddadzadeh, M. (2010). Initial blank optimization in multilayer deep drawing process using GONNS. Journal of manufacturing science and engineering, 132(6).
https://doi.org/10.1115/1.4003121
36) Fatemi, A., Biglari, F., & Morovvati, M. R. (2010). Influences of inner pressure and tube thickness on process responses of hydroforming copper tubes without axial force. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 224(12), 1866-1878.
https://doi.org/10.1243/09544054JEM2001
37) Anarestani, S. S., Morovvati, M. R., & Vaghasloo, Y. A. (2015). Influence of anisotropy and lubrication on wrinkling of circular plates using bifurcation theory. International Journal of Material Forming, 8(3), 439-454.
https://doi.org/10.1007/s12289-014-1187-6
38) Talebi, M., Abbasi-Rad, S., Malekzadeh, M., Shahgholi, M., Ardakani, A. A., Foudeh, K., & Rad, H. S. (2021). Cortical bone mechanical assessment via free water relaxometry at 3 T. Journal of Magnetic Resonance Imaging, 54(6), 1744-1751.
https://doi.org/10.1002/jmri.27765
39) Lucchini, R., Carnelli, D., Gastaldi, D., Shahgholi, M., Contro, R., & Vena, P. (2012). A damage model to simulate nanoindentation tests of lamellar bone at multiple penetration depth. In 6th European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2012 (pp. 5919-5924).
40) Shahgholi. M. (2014). Experimental and numerical characterization of native bone tissue and glass ceramic bone scaffold at small scale.
41) Fada, R., Farhadi Babadi, N., Azimi, R., Karimian, M., & Shahgholi, M. (2021). Mechanical properties improvement and bone regeneration of calcium phosphate bone cement, Polymethyl methacrylate and glass ionomer. Journal of Nanoanalysis, 8(1), 60-79.
42) Monfared, R. M., Ayatollahi, M. R., & Isfahani, R. B. (2018). Synergistic effects of hybrid MWCNT/nanosilica on the tensile and tribological properties of woven carbon fabric epoxy composites. Theoretical and Applied Fracture Mechanics, 96, 272-284.
https://doi.org/10.1016/j.tafmec.2018.05.007
43) Ayatollahi, M. R., Barbaz Isfahani, R., & Moghimi Monfared, R. (2017). Effects of multi-walled carbon nanotube and nanosilica on tensile properties of woven carbon fabric-reinforced epoxy composites fabricated using VARIM. Journal of Composite Materials, 51(30), 4177-4188.
https://doi.org/10.1177/0021998317699982
44) Kamarian, S., Bodaghi, M., Isfahani, R. B., Shakeri, M., & Yas, M. H. (2021). Influence of carbon nanotubes on thermal expansion coefficient and thermal buckling of polymer composite plates: Experimental and numerical investigations. Mechanics Based Design of Structures and Machines, 49(2), 217-232.
https://doi.org/10.1080/15397734.2019.1674664
45) Ayatollahi, M. R., Moghimi Monfared, R., & Barbaz Isfahani, R. (2019). Experimental investigation on tribological properties of carbon fabric composites: effects of carbon nanotubes and nano-silica. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(5), 874-884.
https://doi.org/10.1177/1464420717714345
46) Kamarian, S., Bodaghi, M., Isfahani, R. B., & Song, J. I. (2020). A comparison between the effects of shape memory alloys and carbon nanotubes on the thermal buckling of laminated composite beams. Mechanics Based Design of Structures and Machines, 1-24.
https://doi.org/10.1080/15397734.2020.1776131
47) Mirsasaani, S. S., Bahrami, M., & Hemati, M. (2016). Effect of Argon laser Power Density and Filler content on Physico-mechanical properties of Dental nanocomposites. Bull. Env. Pharmacol. Life Sci, 5, 28-36.
48) Ghomi, F., Daliri, M., Godarzi, V., & Hemati, M. (2021). A novel investigation on characterization of bioactive glass cement and chitosan-gelatin membrane for jawbone tissue engineering. Journal of Nanoanalysis.
49) Mirsasaani, S. S., Hemati, M., Dehkord, E. S., Yazdi, G. T., & Poshtiri, D. A. (2019). Nanotechnology and nanobiomaterials in dentistry. In Nanobiomaterials in clinical dentistry (pp. 19-37). Elsevier.
https://doi.org/10.1016/B978-0-12-815886-9.00002-4
50) Mahale, R. S., Shamanth, V., Sharath, P. C., Shashanka, R., & Hemanth, K. (2021). A review on spark plasma sintering of duplex stainless steels. Elsevier Materials Today: Proceedings, 45, 138-144.
https://doi.org/10.1016/j.matpr.2020.10.357
51) Mahale, R. S., Shamanth, V., Sharath, P. C., Hemanth, K., & Shashanka, R. (2022). Mechanical testing of spark plasma sintered materials: A Review. AIP Conference Proceedings, 2469, 01-24.
https://doi.org/10.1063/5.0080183
52) Mahale, R. S, Shashanka, R., Shamanth, V., Hemanth, K., Nithin, S. K., Sharath, P. C., & Patil, A. (2022). Technology and Challenges in Additive Manufacturing of Duplex Stainless Steels. Biointerface Research in Applied Chemistry, 12(1), 1110-1119.
https://doi.org/10.33263/BRIAC121.11101119
53) Mahale, R. S., Shamanth, V., Hemanth, K., Sharath P. C., Shashanka R., Patil A., & Rathod, B. S. (2022). Sensor Based Additive Manufacturing Technologies. Biointerface Research in Applied Chemistry, 12(3), 3513-3521.
https://doi.org/10.33263/BRIAC123.35133521
54) Mahale, R. S., Shamanth, V., & Sharath P. C. (2020). A Study on Precipitation Kinetics of Super Duplex Stainless Steels. International Journal of Scientific and Engineering Research, 11(07), 18-21.
55) Mahale, R. S., Shashanka, R., Shamanth, V., & Vinaykumar, R. (2021). Voltammetric Determination of Various Food Azo Dyes Using Different Modified Carbon Paste Electrodes . Biointerface Research in Applied Chemistry, 12(4), 4557-4566.
https://doi.org/10.33263/BRIAC124.45574566
56) Mahale, R. S., Shamanth, V., Hemanth, K., Nithin S. K., Sharath, P. C., Shashanka, R., Patil A., & Darshan, Shetty. (2022). Processes and Applications of Metal Additive Manufacturing. Elsevier Materials Today: Proceedings, 54, 228-233.
https://doi.org/10.1016/j.matpr.2021.08.298
57) Asadpoori, A., Keshavarzi, A., & Abedinzadeh, R. (2021). Parametric study of automotive shape memory alloy bumper beam subjected to low-velocity impacts. International journal of crashworthiness, 26(3), 322-327.
https://doi.org/10.1080/13588265.2020.1717916
58) Abedinzadeh, R. (2018). Study on the densification behavior of aluminum powders using microwave hot pressing process. The International Journal of Advanced Manufacturing Technology, 97(5), 1913-1929.
https://doi.org/10.1007/s00170-018-1867-3
59) Moradi, A., Heidari, A., Amini, K., Aghadavoudi, F., & Abedinzadeh, R. (2021). Molecular modeling of Ti-6Al-4V alloy shot peening: the effects of diameter and velocity of shot particles and force field on mechanical properties and residual stress. Modelling and Simulation in Materials Science and Engineering, 29(6), 065001.
https://doi.org/10.1088/1361-651X/ac03a3
60) Abedinzadeh, R., & Faraji Nejad, M. (2021). Effect of embedded shape memory alloy wires on the mechanical behavior of self-healing graphene-glass fiber-reinforced polymer nanocomposites. Polymer Bulletin, 78(6), 3009-3022.
https://doi.org/10.1007/s00289-020-03253-w
61) Abedinzadeh, R., Norouzi, E., & Toghraie, D. (2021). Experimental investigation of machinability in laser-assisted machining of aluminum-based nanocomposites. Journal of Materials Research and Technology, 15, 3481-3491.
https://doi.org/10.1016/j.jmrt.2021.09.127
62) Khademi, H., Iranmanesh, P., Moeini, A., & Tavangar, A. (2014). Evaluation of the effectiveness of the iralvex gel on the recurrent aphthous stomatitis management. International Scholarly Research Notices, 2014.
https://doi.org/10.1155/2014/175378
63) Kolahi, J., Khazaei, S., Iranmanesh, P., & Soltani, P. (2019). Analysis of highly tweeted dental journals and articles: a science mapping approach. British dental journal, 226(9), 673-678.
https://doi.org/10.1038/s41415-019-0212-z
64) Liu, L., Xu, X., Liang, X., Zhang, X., Wen, J., Chen, K., ... & Xu, J. (2021). Periodic mesoporous organosilica-coated magnetite nanoparticles combined with lipiodol for transcatheter arterial chemoembolization to inhibit the progression of liver cancer. Journal of colloid and interface science, 591, 211-220.
https://doi.org/10.1016/j.jcis.2021.02.022
65) Rezanezhad, A., Hajalilou, A., Eslami, F., Parvini, E., Abouzari-Lotf, E., & Aslibeiki, B. (2021). Superparamagnetic magnetite nanoparticles for cancer cells treatment via magnetic hyperthermia: effect of natural capping agent, particle size and concentration. Journal of Materials Science: Materials in Electronics, 32(19), 24026-24040.
https://doi.org/10.1007/s10854-021-06865-8
66) Askar, M. A., El-Nashar, H. A., Al-Azzawi, M. A., Rahman, S. S. A., & Elshawi, O. E. (2022). Synergistic Effect of Quercetin Magnetite Nanoparticles and Targeted Radiotherapy in Treatment of Breast Cancer. Breast Cancer: Basic and Clinical Research, 16, 11782234221086728.
https://doi.org/10.1177/11782234221086728
67) Janani, V., Induja, S., Jaison, D., Abhinav, E. M., Mothilal, M., & Gopalakrishnan, C. (2021). Tailoring the hyperthermia potential of magnetite nanoparticles via gadolinium ION substitution. Ceramics International, 47(22), 31399-31406.
https://doi.org/10.1016/j.ceramint.2021.08.015
68) Areekara, S., Mabood, F., Sabu, A. S., Mathew, A., & Badruddin, I. A. (2021). Dynamics of water conveying single-wall carbon nanotubes and magnetite nanoparticles subject to induced magnetic field: A bioconvective model for theranostic applications. International Communications in Heat and Mass Transfer, 126, 105484.
https://doi.org/10.1016/j.icheatmasstransfer.2021.105484
69) Demin, A. M., Pershina, A. G., Minin, A. S., Brikunova, O. Y., Murzakaev, A. M., Perekucha, N. A., ... & Krasnov, V. P. (2021). Smart Design of a pH-Responsive System Based on pHLIP-Modified Magnetite Nanoparticles for Tumor MRI. ACS applied materials & interfaces, 13(31), 36800-36815.
https://doi.org/10.1021/acsami.1c07748
70) Dong, P., Zhang, T., Xiang, H., Xu, X., Lv, Y., Wang, Y., & Lu, C. (2021). Controllable synthesis of exceptionally small-sized superparamagnetic magnetite nanoparticles for ultrasensitive MR imaging and angiography. Journal of Materials Chemistry B, 9(4), 958-968.
https://doi.org/10.1039/D0TB02337J
71) Baranei, M., Taheri, R. A., Tirgar, M., Saeidi, A., Oroojalian, F., Uzun, L., ... & Goodarzi, V. (2021). Anticancer effect of green tea extract (GTE)-Loaded pH-responsive niosome Coated with PEG against different cell lines. Materials Today Communications, 26, 101751.
https://doi.org/10.1016/j.mtcomm.2020.101751
72) Abasalta, M., Asefnejad, A., Khorasani, M. T., & Saadatabadi, A. R. (2021). Fabrication of carboxymethyl chitosan/poly (ε-caprolactone)/doxorubicin/nickel ferrite core-shell fibers for controlled release of doxorubicin against breast cancer. Carbohydrate Polymers, 257, 117631.
https://doi.org/10.1016/j.carbpol.2021.117631
73) Kheiri Mollaqasem, V., Asefnejad, A., Nourani, M. R., Goodarzi, V., & Kalaee, M. R. (2021). Incorporation of graphene oxide and calcium phosphate in the PCL/PHBV core-shell nanofibers as bone tissue scaffold. Journal of Applied Polymer Science, 138(6), 49797.
https://doi.org/10.1002/app.49797
74) Sotoudeh, A., Darbemamieh, G., Goodarzi, V., Shojaei, S., & Asefnejad, A. (2021). Tissue engineering needs new biomaterials: Poly (xylitol-dodecanedioic acid)-co-polylactic acid (PXDDA-co-PLA) and its nanocomposites. European Polymer Journal, 152, 110469.
https://doi.org/10.1016/j.eurpolymj.2021.110469
75) Abedinzadeh, R. (2018). Study on the densification behavior of aluminum powders using microwave hot pressing process. The International Journal of Advanced Manufacturing Technology, 97(5), 1913-1929.
https://doi.org/10.1007/s00170-018-1867-3
76) Asadpoori, A., Keshavarzi, A., & Abedinzadeh, R. (2021). Parametric study of automotive shape memory alloy bumper beam subjected to low-velocity impacts. International journal of crashworthiness, 26(3), 322-327.
https://doi.org/10.1080/13588265.2020.1717916
77) Moradi, A., Heidari, A., Amini, K., Aghadavoudi, F., & Abedinzadeh, R. (2021). Molecular modeling of Ti-6Al-4V alloy shot peening: the effects of diameter and velocity of shot particles and force field on mechanical properties and residual stress. Modelling and Simulation in Materials Science and Engineering, 29(6), 065001.
https://doi.org/10.1088/1361-651X/ac03a3
78) Elgazery, N. S., Elelamy, A. F., Bobescu, E., & Ellahi, R. (2022). How do artificial bacteria behave in magnetized nanofluid with variable thermal conductivity: application of tumor reduction and cancer cells destruction. International Journal of Numerical Methods for Heat & Fluid Flow.
https://doi.org/10.1108/HFF-11-2021-0722
79) Narayanaswamy, V., Sambasivam, S., Saj, A., Alaabed, S., Issa, B., Al-Omari, I. A., & Obaidat, I. M. (2021). Role of Magnetite Nanoparticles Size and Concentration on Hyperthermia under Various Field Frequencies and Strengths. Molecules, 26(4), 796.
https://doi.org/10.3390/molecules26040796
80) Khan, B., Nawaz, M., Price, G. J., Hussain, R., Baig, A., Haq, S., ... & Waseem, M. (2021). In vitro sustained release of gallic acid from the size-controlled PEGylated magnetite nanoparticles. Chemical Papers, 75(10), 5339-5352.
https://doi.org/10.1007/s11696-021-01724-6