Electrodeposition of anionic, cationic and nonionic surfactants and gold nanoparticles onto glassy carbon electrode for catechol detection
الموضوعات : Journal of NanoanalysisMaryam Nazari 1 , Soheila Kashanian 2 , R. Mohammadi 3
1 - Faculty of Chemistry, Razi University, Kermanshah, Islamic Republic of Iran || Nano Drug Delivery Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences,
Kermanshah, Iran
2 - Faculty of Chemistry, Sensor and Biosensor Research Center (SBRC) and Nanoscience and Nanotechnology Research Center (NNRC), Razi University, Kermanshah, Islamic Republic of Iran || Nano Drug Delivery Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
3 - Faculty of Chemistry, Razi University, Kermanshah, Islamic Republic of Iran
الکلمات المفتاحية: Gold Nanoparticle, Sodium Dodecylbenzene Sulfonate, Tween 80, Cetyltrimethylammonium Bromide, Catechol,
ملخص المقالة :
Three surfactants were selected to modify glassy carbon electrode including sodiumdodecylbenzenesulfonate, Tween 80 and cetyltrimethylammonium bromide. The obtained nano-Au/surfactant/GCEs were characterized with scanning electron microscopy and electrochemicaltechniques. Electrochemical behavior of catechol at the nano-Au/surfactant/GCE was thoroughlyinvestigated for modified electrodes. Compared to the unmodified electrode, the peak currentobviously increased and the oxidation and reduction peaks potential shifted to the negative andpositive potential area, respectively, meaning the peak potential separation is reduced. Thesechanges indicated that the composite nanoparticles possess good electrocatalytic performance onthe electrochemical reaction of catechol. The experimental results revealed that the nanoparticlemodified electrodes have good performances for catechol sensing, which including convenientfabrication, low detection limits and wide linear ranges. These merits of this sensing system providehigh potential to apply in environmental monitoring. In addition, kinetic parameters of catecholredox reaction were determined and the number of electrons was obtained two for the threemodified electrodes.
1. C. Wang, Y. Feng, P. Gao, N. Ren and B.-L. Li, Sci. Total Environ., 431, 366 (2012).
2. M. Nazari, S. Kashanian, and R. Rafipour, Spectrochim. Acta Mol. Biomol. Spectrosc., 145, 130 (2015).
3. H. Chen, J. Yao, F. Wang, Y. Zhou, K. Chen, R. Zhuang, M.M.F. Choi and G. Zaray, Sci. Total Environ., 408, 1043 (2010).
4. N. Negash, H. Alemu, and M. Tessema, ISRN anal. chem., 2014 (2014).
5. M. Nazari, S. Kashanian, P. Moradipour, N. Maleki, J. Electroanal. Chem., 812, 122 (2018).
6. D. Talarico, F. Arduini, A. Constantino, M. Del Carlo, D. Compagnone, D. Moscone and G. Palleschi, Electrochem. commun., 60, 78 (2015).
7. X.-H. Zhou, L.-H. Liu, X. Bai and H.-C. Shi, Sens. Actuators B Chem., 181, 661 (2013).
8. N. Maleki, S. Kashanian, E. Maleki, M. Nazari, Biochem. Eng. J., 128, 1 (2017).
9. F.A. Gorla, E.H. Duarte, E.R. Sartori and C.R.T. Tarley, Microchem. J., 124, 65 (2016).
10. F. Maya, J.M. Estela and V. Cerdà, Talanta, 81, 1 (2010).
11. I. Cesarino, F.C. Moraes, T.C.R. Ferreira, M.R.V. Lanza and S.A.S. Machado, J. Electroanal. Chem., 672, 34 (2012).
12. J. Dobes, J. Sochor, P. Babula, J. Kynicky, J. Hubalek, B. Klejdus and R. Kizek, Int. J. Electrochem. Sci., 8, 4520 (2013).
13. H. Liang, X-B Zhang, Y. Lv, L. Gong, R. Wang, X. Zhu, R. Yang, and W. Tan, Acc. Chem. Res., 47, 1891 (2014).
14. K. Golchin, J. Golchin, S. Ghaderi, N. Alidadiani, S. Eslamkhah, M. Eslamkhah, S. Davaran and A. Akbarzadeh, Artif. Cells Nanomed. Biotechnol., ;1–5. doi: 10.1080/21691401.2017.1305393 [Epub ahead of print] (2017).
15. C. Morasso, S. Picciolini, D. Schiumarini, D. Mehn, I. Ojea-Jime´nez, G. Zanchetta, R. Vanna, M. Bedoni, D. Prosperi, F. Gramatica, J. Nanopart. Res., 17, 330 (2015).
16. H. Ma, B. Yin, S. Wang, Y. Jiao, W. Pan, S. Huang, S. Chen and F. Meng, ChemPhysChem, 5, 68 (2004).
17. M.N. Khan, T.A. Khan, S.A. Al-Thabaiti and Z. Khan, Spectrochim. Acta Mol. Biomol. Spectrosc., 149, 889 (2015).
18. M.S. Bakshi, P. Sharma and T. S. Banipal, Mater. Lett., 61, 5004 (2007).
19. E.H. Duarte, L.T. Kubota and C.R.T. Tarley, Electroanalysis, 24, 2291 (2012).
20. W. Huang, C. Yang, W. Qu and S. Zhang, Russ. J. Electrochem., 44, 946 (2008).
21. F.F. Hudari, E.H. Duarte, A.C. Pereira, L.H. Dall‘Antonia, L.T. Kubota and C.R.T. Tarley, J. Electroanal. Chem., 696, 52 (2013).
22. R. Jain, R. Mishra and A. Dwivedi, Colloids Surf., A, 337, 74 (2009).
23. B.J. Sanghavi and A.K. Srivastava, Electrochim. Acta, 55, 8638 (2010).
24. A. Levent, A. Altun, Y. Yardım and Z. Şentürk, Electrochim. Acta, 128, 54 (2014).
25. Y. Liu, Z. Zhang, L. Nie and S. Yao, Electrochim. Acta, 48, 2823 (2003).
26. Y. J. Yang, L. Guo, W. Zhang, J. Electroanal. Chem., 768, 102 (2016).
27. P. Patnaik, B. C. Tripathy, I. N. Bhattacharya, M. K. Ghosh, R. K. Paramguruc, Russ. J. Non-Ferr. Met., 57, 331 (2016).
28. J. Zhang, X-H Song, S. Ma, Xue Wang, Wen-chang Wang, Zhi-dong Chen, J. Electroanal. Chem., 795, 10 (2017).
29. C.F. Valezi, E.H. Duarte, G.R. Mansano, L.H. Dall’Antonia, C.R.T. Tarley and E.R. Sartori, Sens. Actuators B Chem., 205, 234 (2014).
30. J. Peng and Z.-N. Gao, Anal. Bioanal. Chem., 384, 1525 (2006).
31. Y. Zhao, Z. Wang, W. Zhang and Jiang, X., Nanoscale, 2, 2114 (2010).
32. Z. Wang, J. Yuan, M. Zhou, L. Niu and A. Ivaska, Appl. Surf. Sci., 254, 6289 (2008).
33. D. Song, J. Xia, F. Zhang, S. Bi, W. Xiang, Z. Wang, L. Xia, Y. Xia, Y. Li and L. Xia, Sens. Actuators B Chem., 206, 111 (2015).
34. D. Guzmán-Hernández, M. Ramírez-Silva, M. Palomar-Pardavé, S. Corona-Avendaño, A. Galano, A. Rojas-Hernández and M. Romero-Romo, Electroch. Acta, 59, 150 (2012).
35. E. Laviron, J. electroanal. chem. interfacial electrochem., 101, 19 (1979).
36. W. Sun, D. Wang, Z. Zhai, R. Gao and K. Jiao, J. Iran Chem. Soc., 6, 412 (2009).
37. S. Feng, Y. Zhang, Y. Zhong, Y. Li and S. Li, J. Electroanal. Chem., 733, 1 (2014).
38. Y. Umasankar, A.P. Periasamy and S.-M. Chen, Anal. biochem., 411, 71 (2011).
39. D. Amin and S.T. Sulaiman, Analyst, 109, 739 (1984).