Green Biosynthesis of Silver Functionalized Multi-Walled Carbon Nanotubes, Using Satureja Hortensis L Water Extract and Its Bactericidal Activity
الموضوعات : Journal of Nanoanalysis
1 - Department of Chemistry, College of Science, Shahr-e-Qods Branch, Islamic Azad University, Shahr-e-Qods, Iran
الکلمات المفتاحية: TEM, Green bio synthesis, water extract, Ag Nanoparticles, CNTs,
ملخص المقالة :
Green biosynthesis of silver - functionalized multiwalled carbon nanotube (Ag/FMWCNT) nanohybride from silver nitrate solution using water extract of Satureja hortensis L as reducing agent and FMWCNT as anchoring agent at room condition was succesfully carried out. Water-soluble organics present in the plant materials were mainly responsible for the reduction of silver ions to nano-sized Ag particles The synthesized nanocomposite were characterized using ultraviolet-visible spectroscopy (UV-Vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and powder X-ray diffraction (XRD). The UV-Vis spectra of the Ag/FMWCNT nanocomposite showed absorption peak at around 401 nm. SEM and TEM studies showed that the average particles size of Ag/FMWCNT nanocomposite were about 16.05 nm and also XRD patterns indicated that the structure of the nanocomposite is face-centered cubic. The antibacterial effects of Ag/FMWCNT on Gram positive and Gram negative bacteria were also performed.
1. Beguin F, Szostak K, Lota G, Frackowiak E. A self-supporting electrode for supercapacitors prepared by one-step pyrolysis of carbon nanotube/polyacrylonitrile blends. Adv Mater 2005;17:2380–4.
2. Khomenko V, Frackowiak E, Beguin F. Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations. Electrochim Acta 2005;50:2499–506.
3. Qin X, Durbach S, Wu GT. Electrochemical characterization on RuO2 Æ xH2O/carbon nanotubes composite electr
4. M. L. Chen,;, J. S.; Oh, W. C Bae. Korean Bull. Chem. Soc, 27(2006) 1423
5. K, Shameli., M.B, Ahmad, M. Zargar;. Int J Nanomedicine, 6(2011)581.
6. A. Gupta, M. Maynes, S. Silver, Applied and Environment Microbiology 64 (1998) 5042.
7. S. Pal, Y.K. Tak, J.M. Song, Applied Environmental Microbiology 27 (2007) 1712
8. D. Fortin, T.J. Beveridge, From Biology to Biotechnology and Medical Applications, Wiley-VCH, Weinheim, Germany, 2000.
9. T. Klaus, R. Joerger, E. Olsson, C.G. Ranqvist, Proceedings of the National Academy
of Sciences 96 (1999) 13611.
10. N. Duran, P.D. Marcato, O.L. Alves, G.I. Souza, E. Esposito, Nanobiotechnology 3 (2005) 8.
11. R.Y.S. Parikh, S. Singh, B.L.V. Prasad, M.S. Patole, M. Sastry, Y.S. Shouche, ChemBioChem 9 (2008) 1415.
12. N. Pugazhenthiran, S. Anandan, G. kathiravan, N.K. Udaya prakash, S. Crawford, N.
Ashokkumar, Nanoparticle Research 11 (2009) 1811
13. N. Dura´n, P.D. Marcato, G.I.H. De Souza, L.O. Alves, E. Elisa Esposito, Biomedical Nanotechnology 3 (2007) 203.
14. S Sedaghat, Fullerenes, Nanotubes and Carbon Nanostructures 23(2014) 483.
15. S. Schultz, D.R. Smith, J.J. Mock, D.A. Schultz, Proceedings of the National Academy
of Sciences 97 (2000) 996.
16. P. Perugini, S. Simeoni, S. Scalia, I. Genta, T. Modena, B. Conti, F. Pavanetto, International Journal of Pharmaceutics 246 (2002) 37.
17. S. Jin, K. Ye, Biotechnology Progress 23 (2007) 32
18. Parvin Afsharand SajjadSedaghat, Bio-synthesis of Silver Nanoparticles Using Water Extract of Satureja