Exploration of the adsorption of caffeine molecule on the TiO2 nanostructures: A density functional theory study
الموضوعات : Journal of Nanoanalysis
1 - Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran || Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran || Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani University, Tabriz, Iran
الکلمات المفتاحية: Electronic Properties, density functional theory, Caffeine, Tio2 Nanoparticle,
ملخص المقالة :
The first principles were calculated to study the adsorption behaviors of caffeine molecules on the pristineand N-doped TiO2 anatase nanoparticles. Both oxygen and nitrogen in the caffeine molecule can reactstrongly with TiO2 nanoparticle. Thus, the binding sites were located on the oxygen or nitrogen atom ofthe caffeine, while the binding site of the TiO2 nanoparticle occurs on the fivefold coordinated titaniumatoms. Counting van der Waals (vdW) interactions showed that adsorption on the N-doped TiO2 is morefavorable in energy than the adsorption on the undoped one that indicates the high sensitivity of N-dopedTiO2 nanoparticles towards caffeine molecules. This condition refers to a dominant effect of nitrogendoping on the adsorption properties of pristine TiO2. The existence of large overlaps in the PDOS spectraof the oxygen and nitrogen atoms of the caffeine and titanium atom of TiO2 represent forming Ti-O andTi-N bonds between them. The results of molecular orbital calculation demonstrate that the HOMOsare strongly localized on the caffeine. Charge analysis based on Mulliken charges reveals a considerablecharge transfer from the caffeine to the TiO2 nanoparticle.
1. A. L. Linsebigler, G. Lu and J. T. Yates. J. Chem. Rev., 95, 735 (1995).
2. C. Zhang and P. J. D. Lindan. J. Chem. Phys. Letts., 373, 15 (2003).
3. R. Erdogan, O. Ozbek, and I. Onal. J. Surf. Sci., 604, 1029 (2010).
4. R. Hummatov, O. Gulseren, E. Ozensoy, D. Toffoli, and H. Ustunel. J. Phys. Chem. C. 116, 6191 (2012).
5. A. Fahmi and C. A. Minot. Surf. Sci., 304, 343 (1994).
6. S. I. Shah, W. Li, C. P. Huang, O. Jung, and C. Ni, Proc. Natl. Acad. Sci. U.S.A. 99, 6482 (2002).
7. W. Li, A. I. Frenkel, J. C. Woicik, C. Ni, and S. I. Shah, Phys. Rev. B. 72, 155315 (2005).
8. U. Diebold. Surf. Sci. Reports, 48, 53 (2003).
9. F. Han, V. S. R. Kambala, M. Srinivasan, D. Rajarathnam and R. J. Naidu. Applied Catalysis A: General, 359, 25 (2009).
10. A. Fujishima and K. Honda. Nature. 238, 37 (1972).
11. I. Onal, S. Soyer, and S. Senkan. Surf. Sci., 600, 2457 (2009).
12. W. Shi, Q. Chen, Y. Xu, D. Wu and C. F. Huo. J. Solid State Chem. 184, 1983 (2011).
13. Y. Lei, H. Liu and W. Xiao. Modelling Simul. Mater. Sci. Eng., 18, 025004 (2010).
14. A. Beltran, J. Andres, J. R. Sambrano, and E. Longo. J. Phys. Chem. A. 112, 8943 (2008).
15. S. Tang and Z. Cao. J. Chem. Phys., 134, 044710 (2011).
16. J. Liu, Q. Liu, P. Fang, C. Pan and W. Xiao. Appl. Surf. Sci., 258, 8312 (2012).
17. A. Abbasi, J. J. Sardroodi, and A. R. Ebrahimzadeh. J. Theor. Comput. Chem., 14, 1 (2015).
18. H. Irie, Y. Watanabe and K. Hashimoto. J. Phys. Chem. B. 107, 5483 (2003).
19. J. Liu, L. Dong, W. Guo, T. Liang, and W. Lai. J. Phys. Chem. C. 117, 13037 (2013).
20. A. Abbasi, J. J. Sardroodi and A. R. Ebrahimzadeh. Can. J. Chem., 94, 78 (2016).
21. S. Livraghi, M. C. Paganini, E. Giamello, A. Selloni, C. D. Valentin and G. Pacchioni. J. Am. Chem. Sci., 128, 15666 (2006).
22. H. Liu, M. Zhao, Y. Lei, C. Pan and W. Xiao. J. Comput. Mater. Sci., 15, 389 (2012).
23. M. Breedon, M. Spencer and I. Yarovsky. J. Phys. Chem. C. 114, 16603 (2010).
24. A. K. Rumaiz, J. C. Woicik, E. Cockayne, H. Y. Lin, G. H. Jaffari and S. I. Shah. Appl. Phys. Letts., 95, 262111 (2009).
25. Z. Zhao and Q. Liu. Journal of Physics D: Applied Physics, 41, 085417 (2008).
26. H. Gao, J. Zhou, D. Dai and Y. Qu. J. Chem. Eng. Technol., 32, 867 (2009).
27. D. Zhao, X. Huang, B. Tian, S. Zhou, Y. Li and Z. Du. Appl. Phys. Letts., 98, 115 (2011).
28. M. Landmann, E. Rauls and W. G. Schmidt. Journal of Physics: Condensed Matter. 24, 195503 (2012).
29. P. Hohenberg and W. Kohn. J. Phys. Rev., 136, B864 (1964).
30. W. Kohn and L. Sham. J. Phys. Rev., 140, A1133 (1965).
31. The code, OPENMX, pseudoatomic basis functions, and pseudopotentials are available on a web site ‘http://www.openmxsquare.org’.
32. J. P. Perdew, K. Burke and M. Ernzerhof. J. Phys. Rev. Letts. 78, 1396 (1997).
33. S. Grimme. J. Comput. Chem., 27, 1787 (2006).
34. A. Koklj. J. Comput. Mater. Sci., 28, 155 (2003).
35. R. W. G. Wyckoff. Crystal structures, Second edition. Interscience Publishers, USA, New York, (1963).
36. Web page at: http://rruff.geo.arizona.edu/AMS/amcsd.
37. C. Wu, M. Chen, A. A. Skelton, P. T. Cummings and T. Zheng. ACS Appl. Mat Interfaces. 5, 2567 (2013).