The Effect of DNA in Image Steganography on Privacy Preservation in Smart City
الموضوعات :Habib Esmaeelzadeh Rostam 1 , Homayun Motameni 2 , Rasul Enayatifar 3
1 - Department of Computer Engineering, Sari Branch, Islamic Azad University, Sari, Iran
2 - Department of Computer Engineering, Sari Branch, Islamic Azad University, Sari, Iran
3 - Department of Computer Engineering, Firoozkooh Branch, Islamic Azad University, Firoozkooh, Iran
الکلمات المفتاحية: Steganography, DNA, privacy preservation, Smart city, Internet of Thing,
ملخص المقالة :
The smart city is one of the Internet of Thing-based applications that its use is increasing today. One of the requirements of this system is privacy which protects citizens from disclosure. This paper proposes to protect citizens' privacy by combining chaotic functions and a new method of steganography and image blocking. In this paper, two methods are proposed. In the first proposed method, randomly selected secret data bits are hidden in the pixels of image blocks that have also been randomly selected by the least significant bit method. In the second proposed method, the secret data and image are first converted to the DNA sequence, then the secret data genomes are replaced with the least significant genomes of the pixels of the image blocks that have also been randomly selected. Simulation results show that DNA use increases the quality of hidden images compared to without DNA methods and existing methods.
[1] A. Alarood, N. Ababneh, M. Al-Khasawneh, M. Rawashdeh, and M. Al-Omari, “IoTSteg: ensuring privacy and authenticity in internet of things networks using weighted pixels classification based image steganography,” Cluster Comput., vol. 4, 2021, doi: 10.1007/s10586-021-03383-4.
[2] L. Hou et al., “Internet of Things Cloud: Architecture and Implementation,” IEEE Commun. Mag., vol. 54, no. 11, pp. 32–39, 2016, doi: 10.1109/MCOM.2016.1600398CM.
[3] A. K. Srivastava, A. Agarwal, and A. Mathur, “Internet of Things and its enhanced data security,” Int. J. Eng. …, no. 2, pp. 79–81, 2015.
[4] M. Eltayeb, “Internet of Things: Privacy and Security Implications,” Int. J. Hyperconnectivity Internet Things, vol. 1, no. 1, pp. 1–18, 2017, doi: 10.4018/IJHIoT.2017010101.
[5] H. E. Rostam, A. M. Rahmani, and K. Zamanifar, “Resource Management in Semantic Grid System Based on QoS,” in 2009 Second International Conference on Computer and Electrical Engineering, 2009, vol. 2, pp. 418–421, doi: 10.1109/ICCEE.2009.171.
[6] S. A. Parah, J. A. Sheikh, J. A. Akhoon, and N. A. Loan, “Electronic Health Record hiding in Images for smart city applications: A computationally efficient and reversible information hiding technique for secure communication,” Futur. Gener. Comput. Syst., 2018, doi: 10.1016/j.future.2018.02.023.
[7] W. Strielkowski, Smart grids of tomorrow and the challenges for the future. 2020.
[8] A. A. Abi Sen, F. A. Eassa, K. Jambi, and M. Yamin, “Preserving privacy in internet of things: a survey,” Int. J. Inf. Technol., vol. 10, no. 2, pp. 189–200, 2018, doi: 10.1007/s41870-018-0113-4.
[9] H. Hui, Y. Ding, Q. Shi, F. Li, Y. Song, and J. Yan, “5G network-based Internet of Things for demand response in smart grid: A survey on application potential,” Appl. Energy, vol. 257, no. August 2019, p. 113972, 2020, doi: 10.1016/j.apenergy.2019.113972.
[10] W. Kong, J. Shen, P. Vijayakumar, Y. Cho, and V. Chang, “A practical group blind signature scheme for privacy protection in smart grid,” J. Parallel Distrib. Comput., vol. 136, pp. 29–39, 2020, doi: 10.1016/j.jpdc.2019.09.016.
[11] H. E. Rostam, H. Motameni, and R. Enayatifar, “Privacy-preserving in the Internet of Things based on steganography and chaotic functions,” Optik (Stuttg)., vol. 258, no. March, p. 168864, 2022, doi: 10.1016/j.ijleo.2022.168864.
[12] S. Devi, M. N. Sahoo, K. Muhammad, W. Ding, and S. Bakshi, “Hiding medical information in brain MR images without affecting accuracy of classifying pathological brain,” Futur. Gener. Comput. Syst., vol. 99, pp. 235–246, 2019, doi: 10.1016/j.future.2019.01.047.
[13] M. S. Taha, M. Shafry, and M. Rahem, High payload image steganography scheme with minimum distortion based on distinction grade value method. Multimedia Tools and Applications, 2022.
[14] S. Hossain, S. Mukhopadhyay, and B. Ray, “A secured image steganography method based on ballot transform and genetic algorithm,” 2022.
[15] D. Mehta and D. Bhatti, “Blind image steganography algorithm development which resistant against JPEG compression attack,” Multimed. Tools Appl., pp. 459–479, 2022, doi: 10.1007/s11042-021-11351-8.
[16] I. J. Kadhim, P. Premaratne, P. J. Vial, and B. Halloran, “Comprehensive survey of image steganography: Techniques, Evaluations, and trends in future research,” Neurocomputing, 2019, doi: 10.1016/j.neucom.2018.06.075.
[17] A. Abdullah, S. Ali, R. Mstafa, and V. Haji, “Image steganography based on DNA sequence translation properties,” UKH J. Sci. Eng., vol. 4, no. 6, pp. 15–26, 2020, doi: 10.25079/ukhjse.v4n1y2020.pp15-26.
[18] O. A. Al-Harbi, W. E. Alahmadi, and A. O. Aljahdali, “Security analysis of DNA based steganography techniques,” SN Appl. Sci., vol. 2, no. 2, pp. 1–10, 2020, doi: 10.1007/s42452-019-1930-1.
[19] D. Na, “DNA steganography: Hiding undetectable secret messages within the single nucleotide polymorphisms of a genome and detecting mutation-induced errors,” Microb. Cell Fact., vol. 19, no. 1, pp. 1–9, 2020, doi: 10.1186/s12934-020-01387-0.
[20] M. S. L. A, “A Review on DNA based Encryption and Steganography,” Int. J. Sci. Res., vol. 6, no. 2, pp. 309–312, 2017, [Online]. Available: https://www.ijsr.net/archive/v6i2/ART2017612.pdf.
[21] G. Kumaresan, N. P. Gopalan, and T. Vetriselvi, “An Efficient Image Block Encryption for Key Generation using Non-Uniform Cellular Automata,” Int. J. Comput. Netw. Inf. Secur., vol. 11, no. 2, pp. 28–35, 2019, doi: 10.5815/ijcnis.2019.02.04.
[22] S. Yi and Y. Zhou, “Binary-block embedding for reversible data hiding in encrypted images,” Signal Processing, vol. 133, no. October 2016, pp. 40–51, 2017, doi: 10.1016/j.sigpro.2016.10.017.
[23] M. Mahmud, Atta-ur-Rahman, M. Lee, and J.-Y. Choi, “Evolutionary-based image encryption using RNA codons truth table,” Opt. Laser Technol., vol. 121, no. June 2019, p. 105818, 2020, doi: 10.1016/j.optlastec.2019.105818.
[24] A. Jarjar, “Two Feistel rounds in image cryptography acting at the nucleotide level exploiting dna and rna property,” SN Appl. Sci., no. June, 2019, doi: 10.1007/s42452-019-1305-7.
[25] A. Kumar and N. S. Raghava, “Chaos-based steganography technique to secure information and integrity preservation of smart grid readings using wavelet,” Int. J. Comput. Appl., vol. 0, no. 0, pp. 1–7, 2019, doi: 10.1080/1206212X.2019.1692511.
[26] M. Wang, X. Wang, Y. Zhang, S. Zhou, T. Zhao, and N. Yao, “A novel chaotic system and its application in a color image cryptosystem,” Opt. Lasers Eng., vol. 121, no. December 2018, pp. 479–494, 2019, doi: 10.1016/j.optlaseng.2019.05.013.
[27] W. H. A. A. Y. Al-ashwal, “Hybrid image steganography method using Lempel Ziv Welch and genetic algorithms for hiding confidential data,” Multidimens. Syst. Signal Process., vol. 33, no. 2, pp. 561–578, 2022, doi: 10.1007/s11045-021-00793-w.
[28] O. Fouad and A. Wahab, “Hiding Data Using Efficient Combination of RSA Cryptography , and Compression Steganography Techniques,” vol. 9, pp. 31805–31815, 2021, doi: 10.1109/ACCESS.2021.3060317.
[29] A. K. Bairagi, R. Khondoker, and R. Islam, “An efficient steganographic approach for protecting communication in the Internet of Things (IoT) critical infrastructures,” Inf. Secur. J., vol. 25, no. 4–6, pp. 197–212, 2016, doi: 10.1080/19393555.2016.1206640.
[30] S. kumar, R. Kumar, S. Kumar, and S. Kumar, “Cryptographic construction using coupled map lattice as a diffusion model to enhanced security,” J. Inf. Secur. Appl., vol. 46, pp. 70–83, 2019, doi: 10.1016/j.jisa.2019.02.011.
[31] N. N. Hurrah, S. A. Parah, N. A. Loan, J. A. Sheikh, M. Elhoseny, and K. Muhammad, “Dual watermarking framework for privacy protection and content authentication of multimedia,” Futur. Gener. Comput. Syst., vol. 94, pp. 654–673, 2019, doi: 10.1016/j.future.2018.12.036.
[32] H. Bae, B. Lee, S. Kwon, and S. Yoon, “DNA Steganalysis Using Deep Recurrent Neural Networks,” pp. 88–99, 2017, [Online]. Available: http://arxiv.org/abs/1704.08443.
[33] H. Li, L. Hu, J. Chu, L. Chi, and H. Li, “The maximum matching degree sifting algorithm for steganography pretreatment applied to IoT,” Multimed. Tools Appl., vol. 77, no. 14, pp. 18203–18221, 2018, doi: 10.1007/s11042-017-5075-1.
[34] S. R. Kim, J. N. Kim, S. T. Kim, S. Shin, and J. H. Yi, “Anti-reversible dynamic tamper detection scheme using distributed image steganography for IoT applications,” J. Supercomput., vol. 74, no. 9, pp. 4261–4280, 2018, doi: 10.1007/s11227-016-1848-y.
[35] N. N. Hurrah, S. A. Parah, J. A. Sheikh, F. Al-Turjman, and K. Muhammad, “Secure data transmission framework for confidentiality in IoTs,” Ad Hoc Networks, vol. 95, p. 101989, 2019, doi: 10.1016/j.adhoc.2019.101989.
[36] N. Singh and A. Sinha, “Optical image encryption using fractional Fourier transform and chaos,” Opt. Lasers Eng., 2008, doi: 10.1016/j.optlaseng.2007.09.001.
[37] M. K. Priyanka Dongardive Neelesh Gupta, “Review on Different Methods of Image Steganography,” Int. J. Sci. Res., 2014.
[38] D. R. Igantius and M. Setiadi, “PSNR vs SSIM : imperceptibility quality assessment for image steganography,” 2020.
[39] J. A. Michel-Macarty, M. A. Murillo-Escobar, R. M. López-Gutiérrez, C. Cruz-Hernández, and L. Cardoza-Avendaño, “Multiuser communication scheme based on binary phase-shift keying and chaos for telemedicine,” Comput. Methods Programs Biomed., vol. 162, pp. 165–175, 2018, doi: 10.1016/j.cmpb.2018.05.021.
[40] P. Singh and B. Raman, “Reversible data hiding based on Shamir’s secret sharing for color images over cloud,” Inf. Sci. (Ny)., vol. 422, pp. 77–97, 2018, doi: 10.1016/j.ins.2017.08.077.
[41] C. F. Lee and Y. L. Huang, “An efficient image interpolation increasing payload in reversible data hiding,” Expert Syst. Appl., vol. 39, no. 8, pp. 6712–6719, 2012, doi: 10.1016/j.eswa.2011.12.019.
[42]…L.University,UCIDImageDataset,http://homepages.lboro.ac.uk/cogs/datasets/ucid/data/ucid.v2.tar.gz[03,01,13].