طراحی و شبیه سازی حافظه چهار ترانزیستوری و دو ممریستوری با کمترین توان مصرفی و حاصلضرب تاخیر در توان
الموضوعات :کرامت کرمی 1 , سید محمد علی زنجانی 2 , مهدی دولتشاهی 3
1 - دانشکده مهندسی برق- واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
2 - مرکز تحقیقات ریز شبکه های هوشمند- واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
3 - دانشکده مهندسی برق- واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
الکلمات المفتاحية: حافظه غیرفرار, ممریستور, سلول4T2M, حاصلضرب تاخیر در توان,
ملخص المقالة :
ممریستور به عنوان عنصر اساسی حافظه های اصلی یا پنهان SRAM و DRAM،می تواند به صورت موثری زمان راه اندازی و توان مصرفی مدارها را کاهش دهد. غیر فرار بودن، چگالی بالای مدار نهایی و کاهش حاصل ضرب تاخیر در توان مصرفی PDp از حقایق قابل توجه مدارهای ممریستوری است که منجر به پیشنهاد سلول حافظه شامل چهار ترانزیستور و دو ممریستور (4T2M) در این مقاله شده است. به منظور شبیه سازی سلول حافظه پیشنهادی، طول ممریستورها 10 نانومتر و مقاومت حالت های روشن و خاموش آنها به ترتیب 250 اهم و 10 کیلو اهم انتخاب شده است. همچنین، ترانزیستورهای MOS سلول نیز توسط مدل CMOS PTM 32 نانومتر شبیه سازی شده اند. شبیه سازی در نرم افزار اچ-اسپایس و با تغذیه یک ولت و مقایسه آن با دو سلول شش ترانزیستوری متعارف (6T) و دو ترانزیستوری-دو ممریستوری (2T2M) نشان می دهد که استفاده از ممریستور سبب غیر فرار شدن سلول حافظه پیشنهادی و سلول 2T2M در زمان قطع ولتاژ تغذیه شده است، ضمن آن که مصرف توان مدار پیشنهادی نسبت به مدار 6T و 2T2M به ترتیب 8/99 درصد و 2/57 درصد کاهش یافته و حاصل ضرب متوسط تاخیر در توان نیز به ترتیب 4/99 درصد و 7/26 درصد بهبود یافته است؛ هرچند تاخیر نوشتن این سلول و سلول 2T2Mنسبت به سلول 6T به ترتیب 400 درصد و 218 درصد افزایش یافته است.
[1] S.M.A. Zanjani, M. Dousti, M. Dolatshahi, "A CNTFET universal mixed‐mode biquad active filter in subthreshold region", International Journal of RF and Microwave Computer‐Aided Engineering, vol. 28, no. 9, Article Number: e21574, Nov. 2018 (doi:10.1002/mmce.21574(.
[2] N. Shaarawy, M. Ghoneima, A.G. Radwan, "2T2M Memristor-based memory cell for higher stability RRAM modules", Proceeding of the IEEE/ISCAS, pp. 1418-1421, Lisbon, Portugal, May 2015 (doi: 10.1109/ISCAS.2015.7168909).
[3] A. Baghi-Rahin, V. Baghi-Rahin, "A new 2-input CNTFET-based XOR cell with ultra-low leakage power for low-voltage and low-power full adders", Journal of Intelligent Procedures in Electrical Technology, vol. 10, no. 37, pp. 13-22, Spring 2019 (in Persian).
[4] N. Dehabadi, R. Faghih-Mirzaee, "Ternary DCVS half adder with built-in boosters”, Journal of Intelligent Procedures in Electrical Technology, vol. 11, no. 42, pp. 41-56, Summer 2020(in Persian).
[5] A.M.S. Tosson, A. Neale, M. Anis, L. Wei, "8T1R: A novel low-power high-speed RRAM-based non-volatile SRAM design", Proceeding of the IEEE/GLSVLSI, pp. 239-244, Boston, MA, USA, May 2016 (doi: 10.1145/2902961.2903016).
[6] S. Pal, S. Bose, W.-H. Ki, A. Islam, "Design of power- and variability-aware nonvolatile RRAM cell using memristor as a memory element", IEEE Journal of the Electron Devices Society, vol. 7, pp. 701-709, July 2019 (doi: 10.1109/JEDS.2019.2928830).
[7] S. Bhatti, R. Sbiaa, A. Hirohata, H. Ohno, S. Fukami, S.N. Piramanayagam, "Spintronic based random access memory: A review", Materials Today, vol. 20, no. 9, pp. 530-548, Nov. 2017 (doi: 10.1016/j.mattod.2017.07.007).
[8] K. Eshraghian, K. Cho, O. Kavehei, S. Kang, D. Abbott, S.S. Kang, "Memristor MOS content addressable memory (MCAM): Hybrid architecture for future high performance search engines", IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 19, no. 8, pp. 1407-1417, Aug. 2011 (doi: 10.1109/TVLSI.2010.2049867).
[9] K. Takeda, Y. Aimoto, N. Nakamura, H. Toyoshima, T. Iwasaki, K. Noda, K. Matsui, S. Itoh, S. Masuoka, T. Horiuchi, A. Nakagawa, K. Shimogawa, H. Takahashi, "A 16 Mb 400 MHz loadless CMOS four-transistor SRAM macro", IEEE Journal of Solid-State Circuits, vol. 35, no. 11, pp. 1631-1640, Nov. 2000 (doi: 10.1109/4.881209).
[10] I. Carlson, S. Andersson, S. Natarajan, A. Alvandpour, "A high density, low leakage, 5T SRAM for embedded caches", Proceedings of the IEEE/ESSCIR, pp. 215-218, Leuven, Belgium, Sept. 2004 (doi: 10.1109/ESSCIR.2004.1356656).
[11] G.M.S. Reddy, P.C. Reddy, "Design and implementation of 8k-bits low power SRAM in 180nm technology", Proc. Of the IMCECS, vol. 18, no. 2, pp. 1-8, March 2009.
[12] R.E. Aly, M.A. Bayoumi, "Low-power cache design using 7T SRAM cell", IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 54, no. 4, pp. 318-322, April 2007 (doi: 10.1109/TCSII.2006.877276).
[13] L. Wen, X. Cheng, K. Zhou, S. Tian, X. Zeng, "Bit-interleaving-enabled 8T SRAM with shared data-aware write and reference-based sense amplifier", IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 63, no. 7, pp. 643-647, July 2016 (doi: 10.1109/TCSII.2016.2530881).
[14] M. Hemmati, M. Dolatshahi, S.M.A. Zanjani, "Design and optimization of non-volatile memory based on Memristor System", Proceeding of the IEEE/ICCKE, pp. 654-659, Mashhad, Iran, Oct. 2020 (doi: 10.1109/ICCKE50421.2020.9303681).
[15] I. Vourkas, G.C. Sirakoulis, "A novel design and modeling paradigm for memristor-based crossbar circuits", IEEE Trans. on Nanotechnology, vol. 11, no. 6, pp. 1151-1159, Nov. 2012 (doi: 10.1109/TNANO.2012.2217153).
[16] G. Papandroulidakis, A. Serb, A. Khiat, G. V. Merrett, T. Prodromakis, "Practical implementation of memristor-based threshold logic gates", IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 66, no. 8, pp. 3041-3051, Aug. 2019 (doi:10.1109/TCSI.2019.2902475).
[17] I. Vourkas, G. C. Sirakoulis, "Memristor-based nanoelectronic computing circuits and architectures", vol. 19: Springer, Switzerland, 2016 (ISBN: 978-3-319-22647-7).
[18] G. Papandroulidakis, I. Vourkas, N. Vasileiadis, G.C. Sirakoulis, "Boolean logic operations and computing circuits based on memristors", IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 61, no. 12, pp. 972-976, Sept. 2014 (doi: 10.1109/TCSII.2014.2357351).
[19] S.S. Sarwar, S.A.N. Saqueb, F. Quaiyum, A. Rashid, "Memristor-based nonvolatile random access memory: hybrid architecture for low power compact memory design", IEEE Access, vol. 1, no. 23, pp. 29-35, May 2013 (doi: 10.1109/ACCESS.2013.2259891).
[20] V. Saminathan, K. Parasamivam, "Design and analysis of low power hybrid memristor-CMOS based distinct binary logic nonvolatile SRAM cell", Circuit and System, vol. 7, no. 8, pp. 119-127, March 2016 (doi: 10.4236/cs.2016.73012 ).
[21] M. N. Sakib, R. Hassan, S. Biswas, "A memristor-based 6T1M hybrid memory cell without state drift during successive read", Proceeding of the IEEE/ICECE, pp. 202-205, Dhaka, Dec. 2016 (doi: 10.1109/ICECE.2016.7853891).
[22] J. Singh, B. Raj, "Design and investigation of 7T2M-NVSRAM with enhanced stability and temperature impact on store/restore energy", IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 27, no 6, pp. 1322-1328, June 2019 (doi: 10.1109/TVLSI.2019.2901032).
[23] C. Roy, A. Islam, "TG based 2T2M RRAM using Memristor as memory element", Indian Journal of Science and Technology. Paper, vol. 9, no. 33, pp. 123-137, 2016 (doi: 10.17485/ijst/2016/v9i33/99508).
[24] A. Ebrahimi, E. Kargaran, A. Golmakani, "Design and analysis of three new SRAM cells", Majlesi Journal of Electrical Engineering, vol. 6, no. 4, pp. 30-38, Dec. 2012.
[25] A. Rezaei, S.M.A. Zanjani, “Design and analysis of 2 memristor-based nonvolatile SRAM cells”, Journal of Novel Researches on Electrical Power, vol. 9, no. 2, pp. 47-56, Summer 2020 (in Persian).
[26] Z. Lin, Y. Wang, C. Peng, X. Wu, X. Li, J. Chen, "Multiple sharing 7T1R nonvolatile SRAM with an improved read/write margin and reliable restore yield", IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 3, pp. 607-619, March 2020 (doi: 10.1109/TVLSI.2019.2953005).
[27] N. S. Soliman, M. E. Fouda, A. G. Radwan, "Memristor-CNTFET based ternary logic gates", Microelectronics journal, vol. 72, pp. 74-85, 2018 (doi: 10.1016/j.mejo.2017.12.008).
[28] C. Sun, K. Han, X. Gong, "Performance evaluation of static random access memory (SRAM) based on negative capacitance finFET", Proceeding of the IEEE/ICICDT, pp. 1-4, SUZHOU, China, 2019 (doi: 10.1109/ICICDT.2019.8790831).
[29] D. Batas, H. Fiedler, "A memristor SPICE implementation and a new approach for magnetic flux controlled memristor modeling", IEEE Trans. on Nanotechnology, vol. 10, no. 2, pp. 250-255, March 2011 (doi: 10.1109/TNANO.2009.2038051).
[30] Z. Kolka, D. Biolek, V. Biolkova, "Hybrid modelling and emulation of mem-systems", International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 25, no. 3, pp. 216-225, May/June 2012 (doi: 10.1002/jnm.825).
[31] Y.V. Pershin, M.D. Ventra, "Spice model of memristive devices with threshold", Radio Engineering, vol. 22, no. 2, pp. 485-489, May 2013.
_||_[1] S.M.A. Zanjani, M. Dousti, M. Dolatshahi, "A CNTFET universal mixed‐mode biquad active filter in subthreshold region", International Journal of RF and Microwave Computer‐Aided Engineering, vol. 28, no. 9, Article Number: e21574, Nov. 2018 (doi:10.1002/mmce.21574(.
[2] N. Shaarawy, M. Ghoneima, A.G. Radwan, "2T2M Memristor-based memory cell for higher stability RRAM modules", Proceeding of the IEEE/ISCAS, pp. 1418-1421, Lisbon, Portugal, May 2015 (doi: 10.1109/ISCAS.2015.7168909).
[3] A. Baghi-Rahin, V. Baghi-Rahin, "A new 2-input CNTFET-based XOR cell with ultra-low leakage power for low-voltage and low-power full adders", Journal of Intelligent Procedures in Electrical Technology, vol. 10, no. 37, pp. 13-22, Spring 2019 (in Persian).
[4] N. Dehabadi, R. Faghih-Mirzaee, "Ternary DCVS half adder with built-in boosters”, Journal of Intelligent Procedures in Electrical Technology, vol. 11, no. 42, pp. 41-56, Summer 2020(in Persian).
[5] A.M.S. Tosson, A. Neale, M. Anis, L. Wei, "8T1R: A novel low-power high-speed RRAM-based non-volatile SRAM design", Proceeding of the IEEE/GLSVLSI, pp. 239-244, Boston, MA, USA, May 2016 (doi: 10.1145/2902961.2903016).
[6] S. Pal, S. Bose, W.-H. Ki, A. Islam, "Design of power- and variability-aware nonvolatile RRAM cell using memristor as a memory element", IEEE Journal of the Electron Devices Society, vol. 7, pp. 701-709, July 2019 (doi: 10.1109/JEDS.2019.2928830).
[7] S. Bhatti, R. Sbiaa, A. Hirohata, H. Ohno, S. Fukami, S.N. Piramanayagam, "Spintronic based random access memory: A review", Materials Today, vol. 20, no. 9, pp. 530-548, Nov. 2017 (doi: 10.1016/j.mattod.2017.07.007).
[8] K. Eshraghian, K. Cho, O. Kavehei, S. Kang, D. Abbott, S.S. Kang, "Memristor MOS content addressable memory (MCAM): Hybrid architecture for future high performance search engines", IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 19, no. 8, pp. 1407-1417, Aug. 2011 (doi: 10.1109/TVLSI.2010.2049867).
[9] K. Takeda, Y. Aimoto, N. Nakamura, H. Toyoshima, T. Iwasaki, K. Noda, K. Matsui, S. Itoh, S. Masuoka, T. Horiuchi, A. Nakagawa, K. Shimogawa, H. Takahashi, "A 16 Mb 400 MHz loadless CMOS four-transistor SRAM macro", IEEE Journal of Solid-State Circuits, vol. 35, no. 11, pp. 1631-1640, Nov. 2000 (doi: 10.1109/4.881209).
[10] I. Carlson, S. Andersson, S. Natarajan, A. Alvandpour, "A high density, low leakage, 5T SRAM for embedded caches", Proceedings of the IEEE/ESSCIR, pp. 215-218, Leuven, Belgium, Sept. 2004 (doi: 10.1109/ESSCIR.2004.1356656).
[11] G.M.S. Reddy, P.C. Reddy, "Design and implementation of 8k-bits low power SRAM in 180nm technology", Proc. Of the IMCECS, vol. 18, no. 2, pp. 1-8, March 2009.
[12] R.E. Aly, M.A. Bayoumi, "Low-power cache design using 7T SRAM cell", IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 54, no. 4, pp. 318-322, April 2007 (doi: 10.1109/TCSII.2006.877276).
[13] L. Wen, X. Cheng, K. Zhou, S. Tian, X. Zeng, "Bit-interleaving-enabled 8T SRAM with shared data-aware write and reference-based sense amplifier", IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 63, no. 7, pp. 643-647, July 2016 (doi: 10.1109/TCSII.2016.2530881).
[14] M. Hemmati, M. Dolatshahi, S.M.A. Zanjani, "Design and optimization of non-volatile memory based on Memristor System", Proceeding of the IEEE/ICCKE, pp. 654-659, Mashhad, Iran, Oct. 2020 (doi: 10.1109/ICCKE50421.2020.9303681).
[15] I. Vourkas, G.C. Sirakoulis, "A novel design and modeling paradigm for memristor-based crossbar circuits", IEEE Trans. on Nanotechnology, vol. 11, no. 6, pp. 1151-1159, Nov. 2012 (doi: 10.1109/TNANO.2012.2217153).
[16] G. Papandroulidakis, A. Serb, A. Khiat, G. V. Merrett, T. Prodromakis, "Practical implementation of memristor-based threshold logic gates", IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 66, no. 8, pp. 3041-3051, Aug. 2019 (doi:10.1109/TCSI.2019.2902475).
[17] I. Vourkas, G. C. Sirakoulis, "Memristor-based nanoelectronic computing circuits and architectures", vol. 19: Springer, Switzerland, 2016 (ISBN: 978-3-319-22647-7).
[18] G. Papandroulidakis, I. Vourkas, N. Vasileiadis, G.C. Sirakoulis, "Boolean logic operations and computing circuits based on memristors", IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 61, no. 12, pp. 972-976, Sept. 2014 (doi: 10.1109/TCSII.2014.2357351).
[19] S.S. Sarwar, S.A.N. Saqueb, F. Quaiyum, A. Rashid, "Memristor-based nonvolatile random access memory: hybrid architecture for low power compact memory design", IEEE Access, vol. 1, no. 23, pp. 29-35, May 2013 (doi: 10.1109/ACCESS.2013.2259891).
[20] V. Saminathan, K. Parasamivam, "Design and analysis of low power hybrid memristor-CMOS based distinct binary logic nonvolatile SRAM cell", Circuit and System, vol. 7, no. 8, pp. 119-127, March 2016 (doi: 10.4236/cs.2016.73012 ).
[21] M. N. Sakib, R. Hassan, S. Biswas, "A memristor-based 6T1M hybrid memory cell without state drift during successive read", Proceeding of the IEEE/ICECE, pp. 202-205, Dhaka, Dec. 2016 (doi: 10.1109/ICECE.2016.7853891).
[22] J. Singh, B. Raj, "Design and investigation of 7T2M-NVSRAM with enhanced stability and temperature impact on store/restore energy", IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 27, no 6, pp. 1322-1328, June 2019 (doi: 10.1109/TVLSI.2019.2901032).
[23] C. Roy, A. Islam, "TG based 2T2M RRAM using Memristor as memory element", Indian Journal of Science and Technology. Paper, vol. 9, no. 33, pp. 123-137, 2016 (doi: 10.17485/ijst/2016/v9i33/99508).
[24] A. Ebrahimi, E. Kargaran, A. Golmakani, "Design and analysis of three new SRAM cells", Majlesi Journal of Electrical Engineering, vol. 6, no. 4, pp. 30-38, Dec. 2012.
[25] A. Rezaei, S.M.A. Zanjani, “Design and analysis of 2 memristor-based nonvolatile SRAM cells”, Journal of Novel Researches on Electrical Power, vol. 9, no. 2, pp. 47-56, Summer 2020 (in Persian).
[26] Z. Lin, Y. Wang, C. Peng, X. Wu, X. Li, J. Chen, "Multiple sharing 7T1R nonvolatile SRAM with an improved read/write margin and reliable restore yield", IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 3, pp. 607-619, March 2020 (doi: 10.1109/TVLSI.2019.2953005).
[27] N. S. Soliman, M. E. Fouda, A. G. Radwan, "Memristor-CNTFET based ternary logic gates", Microelectronics journal, vol. 72, pp. 74-85, 2018 (doi: 10.1016/j.mejo.2017.12.008).
[28] C. Sun, K. Han, X. Gong, "Performance evaluation of static random access memory (SRAM) based on negative capacitance finFET", Proceeding of the IEEE/ICICDT, pp. 1-4, SUZHOU, China, 2019 (doi: 10.1109/ICICDT.2019.8790831).
[29] D. Batas, H. Fiedler, "A memristor SPICE implementation and a new approach for magnetic flux controlled memristor modeling", IEEE Trans. on Nanotechnology, vol. 10, no. 2, pp. 250-255, March 2011 (doi: 10.1109/TNANO.2009.2038051).
[30] Z. Kolka, D. Biolek, V. Biolkova, "Hybrid modelling and emulation of mem-systems", International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 25, no. 3, pp. 216-225, May/June 2012 (doi: 10.1002/jnm.825).
[31] Y.V. Pershin, M.D. Ventra, "Spice model of memristive devices with threshold", Radio Engineering, vol. 22, no. 2, pp. 485-489, May 2013.