شبکه هوشمند برای نظارت بر بیمار مبتلا به سرطان سینه بر مبنای آرایش شبکه و تحلیل سلسلهمراتب فازی
جواد نوری پور
1
(
دانشکده مهندسی مکانیک، برق و کامپیوتر- واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
)
محمدعلی پورمینا
2
(
دانشکده مهندسی مکانیک، برق و کامپیوتر- واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
)
محمد ناصر مقدسی
3
(
دانشکده مهندسی مکانیک، برق و کامپیوتر- واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
)
بهبد قلمکاری
4
(
دانشکده مهندسی مکانیک، برق و کامپیوتر- واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
)
الکلمات المفتاحية: تحلیل سلسله مراتبی فازی, تومور سینه, وزن ارتباطی, آرایش توانمندی شبکه, گرهها,
ملخص المقالة :
در این مقاله شبکه هوشمند برای نظارت بر بیمار مبتلا به سرطان سینه مطرح شده است. افزایش سرعت شبکه نظارت بر بیمار به نوع مشاهده، تفکر و درک ما از بیمار بستگی دارد. عوامل مختلفی از شبکه باعث شناخت بیشتر بیماری است که این عوامل با توجه به نوع آرایش شبکه، تعداد گره ها، قابلیت گره ها و جهت لینک های ارتباطی بستگی دارد. چرخه کنترل و نظارت بر بیمار شامل مشاهده، جهت گیری، تصمیم و عمل است که این چرخه مجموعه ای از اعمال متوالی هست که با تغییر آرایش شبکه، جهت گیری، تصمیم و عمل تغییر می یابد. در این مقاله ساختار شبکه هوشمند با توجه به وزن گره های مسیرهای ارتباطی به گونه ای طراحی می شود که چرخه کنترل و نظارت (تحلیل، تصمیم و عمل) عملکرد خوبی را داشته باشد. چرخه کنترل و نظارت با روش پیشنهادی فرآیند تحلیل سلسله مراتبی فازی (FAHP) مدل سازی می شود. این مدل با شناخت اولویت های شناسایی، معیارهای تصمیم گیری را به گونه ای تنظیم می کند که با کمترین زمان، سرعت تشخیص شبکه افزایش یابد و همچنین ابزاری مناسب برای مدل سازی چرخه نظارت و نتایج حاصل از شبکه هوشمند است. نتایج شبیه سازی نشان می دهد که این شبکه از هوشمندی لازم برای ارزیابی وضعیت بیمار در شرایط نامطلوب، قدرت تحلیل و ارزیابی مداوم بیمار را دارد و همچنین قدرت تصمیم گیری به موقع در وضعیت های مختلف را دارد. این نتایج نشان می دهد که با توجه به آرایش شبکه و تحلیل سلسله مراتبی فازی نرخ سرعت شبکه نسبت به دیگر شبکه ها به میزان ۱۰ درصد بهبود یافته است.
[1] A.E. Attaoui, M. Hazmi, A. Jilbab, A. Bourouhou, "Wearable wireless sensors network for ECG telemonitoring using neural network for features extraction", Wireless Personal Communications, vol. 111, no. 3, pp. 1955-1976, April 2020 (doi: 10.1007/s11277-019-06967-x).
[2] G.J. Jong, G.J. Horng, "The PPG physiological signal for heart rate variability analysis", Wireless Personal Communications, vol. 97, no. 4, pp. 5229-5276, Dec. 2017 (doi: 10.1007/s11277-017-4777-z).
[3] I.E. Khuda, M.I. Anis, M. Aamir, "Numerical modeling of human tissues and scattering parameters for microwave cancer imaging systems", Wireless Personal Communications, vol. 95, no. 2, pp. 331-351, July 2017 (doi: 10.1007/s11277-016-3895-3).
[4] A.M.T. Rojas, S. Lorente, M. Hautefeuille, A. Sanchez-Cedillo, "Hierarchical modeling of the liver vascular system", Frontiers in Physiology, vol. 12, Article Number: 7331165, Nov. 2021 (doi: 10.3389/fphys.2021.733165).
[5] A. Qureshi, E. Shih, I. Fan, J. Carlisle, D. Brezinski, M. Kleinman, J. Guttag, "Improving patient care by unshackling telemedicine: adaptively aggregating wireless networks to facilitate continuous collaboration", AMIA Annual Symposium Proceedings, pp. 662-666, Nov. 2010.
[6] T. Yilmaz, R. Foster, Y. Hao, "Detecting vital signs with wearable wireless sensors", Sensors, vol. 10, no. 12, pp. 10837-10862, Nov. 2010 (doi: 10.3390/s101210837).
[7] S. Pirzadi, M.A. Pourmina, S.M. Safavi-Hemami, "Delay-tolerant routing optimization using simulated annealing heuristic algorithm in disrupted mobile ad-hoc networks", Journal of Intelligent Procedures in Electrical Technology, vol. 14, no. 56, pp. 131-150, March 2024 2022 (in Persian) (dor: 20.1001.1.23223871.1402.14.56.9.9).
[8] S.M.A. Zanjani, M. Aalipour, M. Parvizi, "Design of a low power temperature sensor based on sub-threshold performance of carbon nanotube transistors with an inaccuracy of 1.5 ºC for the range of-30 to 125ºC", Journal of Intelligent Procedures in Electrical Technology, vol. 13, no. 50, pp. 115-127, Sept. 2022 (in Persian) (dor: 20.1001.1.23223871.1401.13.50.7.8).
[9] Y.Q. Chen, P.E. Pace, "Simulation of information metrics to assess the value of networking in a general battlespace topology", Proceeding of the IEEE/SYSOSE, Monterey, CA, pp. 1-6, Monterey, CA, USA, Dec. 2008 (doi: 10.1109/SYSOSE.2008.4724133).
[10] Y.H. Ahmadian, M.A. Pourmina, A. Haghbin, "A novel GPS-free localization algorithm for ad-hoc network nodes", Journal of Intelligent Procedures in Electrical Technology, vol. 12, no. 47, pp. 41-56, Dec. 2021 (in Persian) (dpr: 20.1001.1.23223871.1400.12.3.2.2).
[11] M. Ghayoor, H. Pourghassem, "Proposing an Automated System for Differentiating between Healthy Individuals and Patients with Diabetic Retinopathy", Journal of Intelligent Procedures in Electrical Technology, vol. 11, no. 44, pp. 1-19, March 2021 (in Persian).
[12] M. Magalhaes, T.E. Smith, P.E. Pace, "Adaptive node capability to assess the characteristic tempo in a wireless communication network", Proceeding of the IEEE/WCNC, pp. 3013-3018, Paris, France, April 2012 (doi: 10.1109/WCNC.2012.6214321)
[13] M.F. Ling, T. Moon, E. Kruzins, "Proposed network centric warfare metrics: From connectivity to the OODA cycle", Military Operations Research, vol. 10, no. 1, pp. 5-13, Nov. 2005.
[14] J. Li, Y. Tan, K. Yang, X. Zhang, B. Ge, "Structural robustness of combat networks of weapon system-of-systems based on the operation loop", International Journal of Systems Science, vol. 48, no. 3, pp. 659-674, July 2017 (doi: 10.1080/00207721.2016.1212429).
[15] A. Lesne, "Shannon entropy: A rigorous notion at the crossroads between probability, information theory, dynamical systems and statistical physics", Mathematical Structures in Computer Science, vol. 24, no. 3, pp.10837-10862, March 2014 (doi: 10.1017/S0960129512000783).
[16] S. Lorente, M. Hautefeuille, A. Sanchez-Cedillo, "The liver, a functionalized vascular structure", Scientific Reports, vol. 10, no. 1, pp. 1-10, March 2020 (doi: 10.1038/s41598-020-73208-8).
[17] J.J. Buckley, T. Feuring, Y. Hayashi, "Fuzzy hierarchical analysis revisited", European Journal of Operational Research, vol. 129, no. 1, pp. 48-64, Feb. 2001 (doi: 10.1016/S0377-2217(99)00405-1).
[18] F. Ahmed, K. Kilic, "Fuzzy analytic hierarchy process: A performance analysis of various algorithms", Fuzzy Sets and Systems, vol. 362, pp. 110-128, May 2019 (doi: 10.1016/j.fss.2018.08.009).
[19] M. Vafaei, A. Khademzadeh, M.A. Pourmina, "A new QOS-based routing protocol for video streaming in VANETs using ACO algorithm and fuzzy logic", Journal of Intelligent Procedures in Electrical Technology, vol. 12, no. 46, pp. 49-68, Sept. 2021 (in Persian) (dor: 20.1001.1.23223871.1400.12.2.4.2).
[20] Y.M. Wang, T.M. Elhag, Z. Hua, "A modified fuzzy logarithmic least squares method for fuzzy analytic hierarchy process", Fuzzy Sets and Systems, vol. 157, no. 23, pp. 3055-3071, Dec. 2006 (doi: 10.1016/j.fss.2006.08.010).
[21] A. Fernandez, V. Lopez, M.J. Jesus, F. Herrera, "Revisiting evolutionary fuzzy systems: Taxonomy, applications, new trends and challenges", Knowledge-Based Systems, vol. 80, pp. 109-121, May 2015 (doi: 10.1016/j.knosys.2015.01.013).
[22] M.Z. Naghadehi, R. Mikaeil, M. Ataei, "The application of fuzzy analytic hierarchy process (FAHP) approach to selection of optimum underground mining method for Jajarm bauxite mine, Iran", Expert Systems with Applications, vol. 36, no. 4, pp. 8218-8226, May 2009 (doi: 20.1001.1.23223871.1401.13.50.5.6).
[23] H. Meshgin-Kelk, M. Mohammadpour, "Detection of short circuit faults in power transformer by the measurement of its windings voltages and currents using a neuro-fuzzy system", Journal of Intelligent Procedures in Electrical Technology, vol. 13, no. 50, pp. 87-99, Sept. 2022 (in Persian) (dor: 20.1001.1.23223871.1401.13.50.5.6)
[24] M. Ahmadi, K. Mohamedpour, "A new method for recognizing pulse repetition interval modulation", Proceeding of the IEEE/ICSPS, pp. 146-151, Singapore, July 2009 (doi: 10.1109/ICSPS.2009.8).
[25] E. Cianca, B. Gupta, "FM-UWB for communications and radar in medical applications", Wireless Personal Communications, vol. 51, no. 4, pp. 793-809, Oct. 2009 (doi: 10.1007/s11277-009-9772-6).
[26] R.A.S. Malick, M. Murtaza, K.A. Qureshi, "A knowledge graph-based framework for integrated network-centric warfare strategies for cyber-physical-social world", Proceeding of the IEEE/ICCWS, pp. 42-48, Islamabad, Pakistan, Dec. 2022 (doi: 10.1109/ICCWS56285.2022.9998467).
[27] Y. Zhong, Q. Sun, H. Li, K. Ren, Z. Huang, Y. Zhang, "Combat system-of-systems network modeling research", Proceeding of the IEEE/ICUS, pp. 1270-1275, Guangzhou, China, Oct. 2022 (doi: 10.1109/ICUS55513.2022.9987241).
[28] V. Lytvyn, D. Dosyn, V. Vysotska, A. Hryhorovych, "Method of ontology use in OODA", Proceeding of the IEEE/DSMP, pp. 21-25, Lviv, Ukraine, Sept. 2020 (doi: 10.1109/DSMP47368.2020.9204107).
_||_