Mild Synthesis, Characterization, and Application of some Polythioester Polymers Catalyzed by Cetrimide Ionic Liquid as a Green and Eco-Friendly Phase-Transfer Catalyst
Subject Areas : Iranian Journal of CatalysisAzhar Ali 1 , Mohanad Saleh 2 , Khalid Owaid 3
1 - Directorate of Education in Nineveh, Mosul, Iraq
2 - Department of Chemistry, College of Education for pure science, University of Mosul, Mosul, Iraq
3 - Department of Chemistry, College of Education for pure science, University of Mosul, Mosul, Iraq
Keywords:
Abstract :
[1] M. Wang, X. Jiang, Sulfur–sulfur bond construction, Sulfur Chemistry, (2019) 285-324.
[2] C. Liu, B. Wang, Z. Guo, J. Zhang, M. Xie, Metal-free cascade rearrangement/radical addition/oxidative C–H annulation of propargyl alcohols with sodium sulfinates: access to 2-sulfenylindenones, Organic Chemistry Frontiers, 6 (2019) 2796-2800.
[3] D. Cao, P. Pan, C.-J. Li, H. Zeng, Photo-induced transition-metal and photosensitizer free cross–coupling of aryl halides with disulfides, Green Synthesis and Catalysis, 2 (2021) 303-306.
[4] X. Cao, H. Wang, J. Yang, R. Wang, X. Hong, X. Zhang, J. Xu, H. Wang, Sulfur-substitution-enhanced crystallization and crystal structure of poly (trimethylene monothiocarbonate), Chin. Chem. Lett., 33 (2022) 1021-1024.
[5] C.G. Kim, M.J. Son, J.Y. Do, Cationic living polymerization of cyclic dithiocarbonates involving sulfide-migration, Eur. Polym. J., 156 (2021) 110611.
[6] J.Y. Do, S.B. Shin, S.M. Jeong, M.-y. Jung, Ring-opening polymerization of cyclic 1, 3-oxathiolane-2-thione promoted by neighboring sulfide group and ring contraction, Eur. Polym. J., 131 (2020) 109689.
[7] Y. Zhang, K.M. Konopka, R.S. Glass, K. Char, J. Pyun, Chalcogenide hybrid inorganic/organic polymers (CHIPs) via inverse vulcanization and dynamic covalent polymerizations, Polymer Chemistry, 8 (2017) 5167-5173.
[8] Y. Zhang, T.S. Kleine, K.J. Carothers, D.D. Phan, R.S. Glass, M.E. Mackay, K. Char, J. Pyun, Functionalized chalcogenide hybrid inorganic/organic polymers (CHIPs) via inverse vulcanization of elemental sulfur and vinylanilines, Polymer Chemistry, 9 (2018) 2290-2294.
[9] A. Kausar, S. Zulfiqar, M.I. Sarwar, Recent developments in sulfur-containing polymers, Polymer Reviews, 54 (2014) 185-267.
[10] L.V.S. Ceneviva, M. Mierzati, Y. Miyahara, C.T. Nomura, S. Taguchi, H. Abe, T. Tsuge, Poly (3-mercapto-2-methylpropionate), a Novel α-Methylated Bio-Polythioester with Rubber-like Elasticity, and Its Copolymer with 3-hydroxybutyrate: Biosynthesis and Characterization, Bioengineering, 9 (2022) 228.
[11] S.M. Guillaume, Sustainable and degradable plastics, Nat. Chem., 14 (2022) 245-246.
[12] X.-L. Chen, B. Wang, D.-P. Song, L. Pan, Y.-S. Li, One-Step Synthesis of Sequence-Controlled Polyester-block-Poly (ester-alt-thioester) by Chemoselective Multicomponent Polymerization, Macromolecules, 55 (2022) 1153-1164.
[13] M. Shin, H. Kim, G. Park, J. Park, H. Ahn, D.K. Yoon, E. Lee, M. Seo, Bilayer-folded lamellar mesophase induced by random polymer sequence, Nature communications, 13 (2022) 1-8.
[14] M. Frenkel-Pinter, M. Bouza, F.M. Fernández, L.J. Leman, L.D. Williams, N.V. Hud, A. Guzman-Martinez, Thioesters provide a plausible prebiotic path to proto-peptides, Nature communications, 13 (2022) 1-8.
[15] V.D. Nguyen, R. Trevino, S.G. Greco, H.D. Arman, O.V. Larionov, Tricomponent Decarboxysulfonylative Cross-coupling Facilitates Direct Construction of Aryl Sulfones and Reveals a Mechanistic Dualism in the Acridine/Copper Photocatalytic System, ACS Catal., 12 (2022) 8729-8739.
[16] C.S. Marvel, A. Kotch, Polythiolesters, J. Am. Chem. Soc., 73 (1951) 1100-1102.
[17] W. Podkoscielny, W. Charmas, Linear polythioesters. II. Products of interfacial polycondensation of 1, 4‐di (mercaptomethyl)‐naphthalene, 1, 5‐di (mercaptomethyl) naphthalene, and a mixture of 1, 4‐and 1, 5‐di (mercaptomethyl)‐naphthalene with terephthaloyl and isophthaloyl chlorides, Journal of Polymer Science: Polymer Chemistry Edition, 17 (1979) 2429-2438.
[18] W. Podkościelny, W. Charmas, Linear polythioesters. III. Products of interfacial polycondensation of 1, 4‐, 1, 5‐di (mercaptomethyl)‐naphthalene, and their mixture with adipoyl and sebacoyl chlorides, Journal of Polymer Science: Polymer Chemistry Edition, 17 (1979) 3811-3821.
[19] D. Abe, Y. Sasanuma, Molecular design, synthesis and characterization of aromatic polythioester and polydithioester, Polymer Chemistry, 3 (2012) 1576-1587.
[20] D. Abe, Y. Fukuda, Y. Sasanuma, Chemistry of aromatic polythioesters and polydithioesters, Polymer Chemistry, 6 (2015) 3131-3142.
[21] K.A. Stellmach, M.K. Paul, M. Xu, Y.-L. Su, L. Fu, A.R. Toland, H. Tran, L. Chen, R. Ramprasad, W.R. Gutekunst, Modulating polymerization thermodynamics of thiolactones through substituent and heteroatom incorporation, ACS Macro Letters, 11 (2022) 895-901.
[22] H. Wang, H. Lin, X. Li, R. Ren, J. Pu, H. Zhang, Y. Zheng, J. Zhao, S. Ng, H. Zhang, Application of Phase Transfer Catalysis in the Esterification of Organic Acids: The Primary Products from Ring Hydrocarbon Oxidation Processes, Catalysts, 9 (2019) 851.
[23] K. Maruoka, Practical aspects of recent asymmetric phase-transfer catalysis, Org. Process Res. Dev., 12 (2008) 679-697.
[24] N. Ohtani, T. Ohta, Y. Hosoda, T. Yamashita, Phase behavior and phase-transfer catalysis of tetrabutylammonium salts. Interface-mediated catalysis, Langmuir, 20 (2004) 409-415.
[25] Q. Han, Q. Wang, H. Wu, X. Ge, A. Gao, Y. Bai, S. Gao, G. Wang, X. Cao, Novel Naphthalimide‐Based Self‐Assembly Systems with Different Terminal Groups for Sensitive Detection of Thionyl Chloride and Oxalyl Chloride in Two Modes, ChemistrySelect, 7 (2022) e202200298.
[26] P.N. Nelson, W.H. Mulder, Thermodynamic and kinetic models for acid chloride formation: A computational and theoretical mechanistic study, J. Mol. Graphics Modell., 112 (2022) 108139.
[27] G. Taşkor Önel, N. Saygılı, Synthesis and Cyclooxygenase Enzyme Inhibitory Activity of Flurbiprofen Analogues: Simple Methodology of Their Nanoemulsion Systems, ChemistrySelect, 7 (2022) e202201654.
[28] P. Puthiaraj, Y.-R. Lee, S. Zhang, W.-S. Ahn, Triazine-based covalent organic polymers: design, synthesis and applications in heterogeneous catalysis, J. Mater. Chem. A, 4 (2016) 16288-16311.
[29] P. Fita, Toward understanding the mechanism of phase transfer catalysis with surface second harmonic generation, J. Physic. Chem. C, 118 (2014) 23147-23153.
[30] S. Baj, A. Siewniak, K. Bijak, Synthesis of peroxyesters in tri-liquid system using quaternary onium salts and polyethylene glycols as phase-transfer catalysts, Appl. Catal., A, 437 (2012) 184-189.
[31] S. Devaraju, P. Eswar, T. Gangadhar Reddy, K. Ravi Kumar, Metal salts used as an efficient catalyst to reduce the ring opening polymerization temperature of benzoxazines, Journal of Macromolecular Science, Part A, (2022) 1-7.
[32] S. Xiao, C. Akinyi, J. Longun, J.O. Iroh, Polyimide Copolymers and Nanocomposites: A Review of the Synergistic Effects of the Constituents on the Fire-Retardancy Behavior, Energies, 15 (2022) 4014.
[33] F.P. Marques, A.S. Colares, M.N. Cavalcante, J.S. Almeida, D. Lomonaco, L.M. Silva, M. de Freitas Rosa, R.C. Leitão, Optimization by Response Surface Methodology of Ethanosolv Lignin Recovery from Coconut Fiber, Oil Palm Mesocarp Fiber, and Sugarcane Bagasse, Indust. Eng. Chem. Res., 61 (2022) 4058-4067.
[34] K.-D. Kuehn, W. Ege, U. Gopp, Acrylic bone cements: mechanical and physical properties, Orthopedic Clinics, 36 (2005) 29-39.
[35] F. Pahlevanzadeh, H. Bakhsheshi-Rad, E. Hamzah, In-vitro biocompatibility, bioactivity, and mechanical strength of PMMA-PCL polymer containing fluorapatite and graphene oxide bone cements, Journal of the mechanical behavior of biomedical materials, 82 (2018) 257-267.
[36] C. Lee, The mechanical properties of PMMA bone cement, the well-cemented total hip arthroplasty, Springer2005, pp. 60-66.
[37] B. Świeczko-Żurek, A. Zieliński, D. Bociąga, K. Rosińska, G. Gajowiec, Influence of Different Nanometals Implemented in PMMA Bone Cement on Biological and Mechanical Properties, Nanomaterials, 12 (2022) 732.
[38] J. García-García, G. Azuara, O. Fraile-Martinez, C. García-Montero, M.A. Álvarez-Mon, S. Ruíz-Díez, M. Álvarez-Mon, J. Buján, N. García-Honduvilla, M.A. Ortega, Modification of the Polymer of a Bone Cement with Biodegradable Microspheres of PLGA and Loading with Daptomycin and Vancomycin Improve the Response to Bone Tissue Infection, Polymers, 14 (2022) 888.