Recent Progress in Visible-Light Active (VLA) TiO2 Nano-Structures for Enhanced Photocatalytic Activity (PCA) and Antibacterial Properties: A Review
Subject Areas : Iranian Journal of CatalysisKasun Seneviratne 1 , Imalka Munaweera 2 , Sriyani Peiris 3 , Colin Peiris 4 , Nilwala Kottegoda 5
1 - Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology (SLIIT), New Kandy Road, Malabe, Sri Lanka
2 - Department of Chemistry, Faculty of Applied Science, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka|Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
3 - Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology (SLIIT), New Kandy Road, Malabe, Sri Lanka
4 - Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology (SLIIT), New Kandy Road, Malabe, Sri Lanka
5 - Department of Chemistry, Faculty of Applied Science, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka|Center for Advanced Materials Research (CAMR), Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
Keywords:
Abstract :
[1] V. Karunaratne, N. Kottegoda, A. De Alwis, J. Natl. Sci. Found. Sri Lanka 40 (2012) 3-8.
[2] Z.L. Wang, W. Wu, Angew. Chem. Int. Ed. 51 (2012) 11700–11721.
[3] N. Dasgupta, S. Ranjan, C. Ramalingam, Environ. Chem. Lett. 15 (2017) 591–605.
[4] T. Harper, IOP Publ. Ltd 14 (2003) 1-5.
[5] N. Castro-Alarcón, J.L. Herrera-Arizmendi, L.A. Marroquín-Carteño, I.P. Guzmán-Guzmán, A. Pérez-Centeno, M.Á. Santana-Aranda, Microbiol. Res. Int. 4 (2016) 55–62.
[6] M. Mandeh, M. Omidi, M. Rahaie, Biol. Trace Elem. Res. 150 (2012) 376–380.
[7] N. Kottegoda, C. Sandaruwan, P. Perera, N. Madusanka, V. Karunaratne, Nanosci. Nanotechnol.-Asia 4 (2015) 94–102.
[8] U.A. Rathnayake, T. Senapathi, C. Sandaruwan, S. Gunawardene, V. Karunaratne, N. Kottegoda, Chem. Cent. J. 12 (2018) 1-7.
[9] V.K. Wimalasiri, H.U. Weerathunga, N. Kottegoda, V. Karunaratne, J. Nanomater. 2017 (2017) 1–14.
[10]G.P. Gunaratne, N. Kottegoda, N. Madusanka, I. Munaweera, C. Sandaruwan, B.A.D. Madhushanka, U.A. Rathnayake, V. Karunaratne, Indian J. Agric. Sci. 86 (2016) 494–499.
[11]N. Kottegoda, C. Sandaruwan, G. Priyadarshana, A. Siriwardhana, U.A. Rathnayake, D.M. Berugoda Arachchige, A.R. Kumarasinghe, D. Dahanayake, V. Karunaratne, G.A.J. Amaratunga, ACS Nano 11 (2017) 1214–1221.
[12]N. Kottegoda, I. Munaweera, N. Madusanka, V. Karunaratne, Curr. Sci. 101 (2011) 73-78.
[13]R. Raliya, C. Avery, S. Chakrabarti, P. Biswas, Appl. Nanosci. 7 (2017) 253–259.
[14]R.S. Mulik, C. Bing, M. Ladouceur-Wodzak, I. Munaweera, R. Chopra, I.R. Corbin, Biomaterials 83 (2016) 257–268.
[15]I. Munaweera, J. Hong, A. D’Souza, K.J. Balkus, J. Porous Mater. 22 (2015) 1–10.
[16]A. Nezamzadeh-Ejhieh, S. Tavakoli-Ghinani, Comptes Rendus Chim. 17 (2014) 49–61.
[17]M. Nosuhi, A. Nezamzadeh-Ejhieh, Electrochimica Acta 223 (2017) 47–62.
[18]C. Madhusha, I. Munaweera, V. Karunaratne, N. Kottegoda, J. Agric. Food Chem. 68 (2020) 8962–8975.
[19]S. Fernando, N. Madusanka, N. Kottegoda, U.N. Ratnayake, in: Proceedings Int. Conf. Adv. Mater. Sci. Eng., Colombo, Sri Lanka, 2012, 1-7.
[20]D.B. Hamal, K.J. Klabunde, J. Colloid Interface Sci. 311 (2007) 514–522.
[21]Y. Zhang, J. Wan, Y. Ke, J. Hazard. Mater. 177 (2010) 750–754.
[22]G. Li, L. Chen, M.E. Graham, K.A. Gray, J. Mol. Catal. Chem. 275 (2007) 30–35.
[23]J.H. Carey, J. Lawrence, H.M. Tosine, Bull. Environ. Contam. Toxicol. 16 (1976) 697–701.
[24]A.M. Luís, M.C. Neves, M.H. Mendonça, O.C. Monteiro, Mater. Chem. Phys. 125 (2011) 20–25.
[25]M.B. Suwarnkar, R.S. Dhabbe, A.N. Kadam, K.M. Garadkar, Ceram. Int. 40 (2014) 5489–5496.
[26]J. You, Y. Guo, R. Guo, X. Liu, Chem. Eng. J. 373 (2019) 624–641.
[27]H. Derikvandi, A. Nezamzadeh-Ejhieh, J. Colloid Interface Sci. 490 (2017) 314–327.
[28]A. Nezamzadeh-Ejhieh, H. Zabihi-Mobarakeh, J. Ind. Eng. Chem. 20 (2014) 1421–1431.
[29]N.T. Sahrin, R. Nawaz, F.K. Chong, S.L. Lee, M.D.H. Wirzal, Environ. Technol. Innov. 22 (2021) 101418.
[30]T. Wang, Y. Li, W.-T. Wu, Y. Zhang, L. Wu, H. Chen, Appl. Surf. Sci. 537 (2021) 148025.
[31]S. Abdelnasser, R. Al Sakkaf, G. Palmisano, J. Environ. Chem. Eng. 9 (2021) 104873.
[32]H. Derikvandi, A. Nezamzadeh-Ejhieh, J. Hazard. Mater. 321 (2017) 629–638.
[33]M. Arunkumar, A.S. Nesaraj, Iran. J. Catal. 10 (2020) 235–245.
[34]A. Rostami-Vartooni, A. Moradi-Saadatmand, M. Bagherzadeh, Iran. J. Catal. 9 (2018) 27–35.
[35]M. Babaahamdi-Milani, A. Nezamzadeh-Ejhieh, J. Hazard. Mater. 318 (2016) 291–301.
[36]A. Rahmani-Aliabadi, A. Nezamzadeh-Ejhieh, J. Photochem. Photobiol. Chem. 357 (2018) 1–10.
[37]H. Derikvandi, A. Nezamzadeh-Ejhieh, Solid State Sci. 101 (2020) 106127.
[38]N. Omrani, A. Nezamzadeh-Ejhieh, J. Photochem. Photobiol. Chem. 389 (2020) 112223.
[39]J. Esmaili-Hafshejani, A. Nezamzadeh-Ejhieh, J. Hazard. Mater. 316 (2016) 194–203.
[40]S.A. Mirsalari, A. Nezamzadeh-Ejhieh, Sep. Purif. Technol. 250 (2020) 117235.
[41]S. Azimi, A. Nezamzadeh-Ejhieh, J. Mol. Catal. Chem. 408 (2015) 152–160.
[42]A.N. Ejhieh, M. Khorsandi, J. Hazard. Mater. 176 (2010) 629–637.
[43]F. Soleimani, A. Nezamzadeh-Ejhieh, J. Mater. Res. Technol. 9 (2020) 16237–16251.
[44]H. Derikvandi, M. Vosough, A. Nezamzadeh-Ejhieh, Int. J. Hydrog. Energy 46 (2021) 2049–2064.
[45]T.-F. Yeh, J.-M. Syu, C. Cheng, T.-H. Chang, H. Teng, Adv. Funct. Mater. 20 (2010) 2255–2262.
[46]D.J. Martin, G. Liu, S.J.A. Moniz, Y. Bi, A.M. Beale, J. Ye, J. Tang, Chem. Soc. Rev. 44 (2015) 7808–7828.
[47]W.S. Koe, J.W. Lee, W.C. Chong, Y.L. Pang, L.C. Sim, Environ. Sci. Pollut. Res. 27 (2020) 2522–2565.
[48]S. Gupta, M. Tripathi, Open Chem. 10 (2012) 279-284.
[49]C. Chen, W. Ma, J. Zhao, Chem. Soc. Rev. 39 (2010) 4206-4219.
[50]V. Etacheri, C. Di Valentin, J. Schneider, D. Bahnemann, S.C. Pillai, J. Photochem. Photobiol. C Photochem. Rev. 25 (2015) 1–29.
[51]J. Maragatha, S. Rajendran, T. Endo, S. Karuppuchamy, J. Mater. Sci. Mater. Electron. 28 (2017) 5281–5287.
[52]N.T. Tung, D.N. Huyen, J. Nanomater. 2016 (2016) 1–7.
[53]R.S. Dariani, A. Esmaeili, A. Mortezaali, S. Dehghanpour, Optik 127 (2016) 7143–7154.
[54]S. Challagulla, R. Nagarjuna, R. Ganesan, S. Roy, Nano-Struct. Nano-Objects 12 (2017) 147–156.
[55]L. Spadaro, F. Arena, A. Palella, in: Photocatalytic Reduct. CO2 New Chall. Sol. Energy Exploit., Elsevier, 2018, 429–472.
[56]K. Pathakoti, S. Morrow, C. Han, M. Pelaez, X. He, D.D. Dionysiou, H.-M. Hwang, Environ. Sci. Technol. 47 (2013) 9988–9996.
[57]H. Zabihi-Mobarakeh, A. Nezamzadeh-Ejhieh, J. Ind. Eng. Chem. 26 (2015) 315–321.
[58]A. Nezamzadeh-Ejhieh, M. Bahrami, Desalination Water Treat. 55 (2015) 1096–1104.
[59]M. Balakrishnan, R. John, Iran. J. Catal. 10 (2020) 235–245.
[60]A. Besharati-Seidani, Iran. J. Catal. 6 (2016) 447–454.
[61]S. Dianat, Iran. J. Catal. 8 (2018) 121–132.
[62]N.E. Fard, R. Fazaeli, Iran. J. Catal. 8 (2018) 133–141.
[63]B. Khodadadi, Iran. J. Catal. 6 (2016) 305–311.
[64]A. Mahmoodi, S.M. Mehdinia, A. Rahmani, H. Nassehinia, Iran. J. Catal. 10 (2020) 23–32.
[65]J.T. Mehrabad, M. Partovi, F.A. Rad, R. Khalilnezhad, Iran. J. Catal. 9 (2018) 233–239.
[66]H.F. Moafi, Iran. J. Catal. 6 (2016) 281–292.
[67]H.R. Pouretedal, M. Fallahgar, F.S. Pourhasan, M. Nasiri, Iran. J. Catal. 7 (2017) 317–326.
[68]T. Seyedi-Chokanlou, S. Aghabeygi, N. Molahasani, F. Abrinaei, Iran. J. Catal. 11 (2021) 49–58.
[69]J. Prakash, Samriti, A. Kumar, H. Dai, B.C. Janegitz, V. Krishnan, H.C. Swart, S. Sun, Mater. Today Sustain. 13 (2021) 100066.
[70]D. Awfa, M. Ateia, M. Fujii, M.S. Johnson, C. Yoshimura, Water Res. 142 (2018) 26–45.
[71]M. Nemiwal, T.C. Zhang, D. Kumar, Sci. Total Environ. 767 (2021) 144896.
[72]S.M. Patil, S.A. Vanalakar, S.A. Sankpal, S.P. Deshmukh, S.D. Delekar, Results Chem. 3 (2021) 100102.
[73]J.C. Durán-Álvarez, V.A. Hernández-Morales, M. Rodríguez-Varela, D. Guerrero-Araque, D. Ramirez-Ortega, F. Castillón, P. Acevedo-Peña, R. Zanella, Catal. Today 341 (2020) 71–81.
[74]M.A. Behnajady, H. Eskandarloo, J. Nanosci. Nanotechnol. 13 (2013) 548–553.
[75]S. Hoang, S. Guo, C.B. Mullins, J. Phys. Chem. C 116 (2012) 23283–23290.
[76]W. Xie, R. Li, Q. Xu, Sci. Rep. 8 (2018) 8752.
[77]C. Hao, W. Wang, R. Zhang, B. Zou, H. Shi, Sol. Energy Mater. Sol. Cells 174 (2018) 132–139.
[78]J.S. Khaw, M. Curioni, P. Skeldon, C.R. Bowen, S.H. Cartmell, J. Nanotechnol. 2019 (2019) 1–13.
[79]J.-Y. Park, K.-I. Choi, J.-H. Lee, C.-H. Hwang, D.-Y. Choi, J.-W. Lee, Mater. Lett. 97 (2013) 64–66.
[80]A. Mayabadi, A. Pawbake, S. Rondiya, A. Rokade, R. Waykar, R. Kulkarni, A. Jadhavar, M. Kamble, B. Gabhale, V. Waman, V. Sathe, H. Pathan, S. Jadkar, Thin Solid Films 589 (2015) 493–502.
[81]Z. He, Q. Cai, H. Fang, G. Situ, J. Qiu, S. Song, J. Chen, J. Environ. Sci. 25 (2013) 2460–2468.
[82]Y.-Z. Chen, R.-J. Wu, L.-Y. Lin, W.-C. Chang, J. Power Sources 413 (2019) 384–390.
[83]D. T, V.R. K., V. M., B. K., C. B., R.R. K., Appl. Surf. Sci. 435 (2018) 216–224.
[84]W. Zhang, S. Chen, S. Yu, Y. Yin, J. Cryst. Growth 308 (2007) 122–129.
[85]J. Zhang, P. Zhou, J. Liu, J. Yu, Phys Chem Chem Phys 16 (2014) 20382–20386.
[86]P. Bouras, E. Stathatos, P. Lianos, Appl. Catal. B Environ. 73 (2007) 51–59.
[87]K. Fischer, A. Gawel, D. Rosen, M. Krause, A. Abdul Latif, J. Griebel, A. Prager, A. Schulze, Catalysts 7 (2017) 209.
[88]M. Monai, T. Montini, P. Fornasiero, Catalysts 7 (2017) 304.
[89]W. Hu, L. Li, G. Li, C. Tang, L. Sun, Cryst. Growth Des. 9 (2009) 3676–3682.
[90]Z. Li, S. Cong, Y. Xu, ACS Catal. 4 (2014) 3273–3280.
[91]R. Daghrir, P. Drogui, D. Robert, Ind. Eng. Chem. Res. 52 (2013) 3581–3599.
[92]L.V. Bora, R.K. Mewada, Renew. Sustain. Energy Rev. 76 (2017) 1393–1421.
[93]M.R.D. Khaki, M.S. Shafeeyan, A.A.A. Raman, W.M.A.W. Daud, J. Environ. Manage. 198 (2017) 78–94.
[94]C. Liao, Y. Li, S.C. Tjong, Nanomaterials 10 (2020) 124.
[95]S. Mousavi-Mortazavi, A. Nezamzadeh-Ejhieh, Desalination Water Treat. 57 (2016) 10802–10814.
[96]X. Zhao, G. Zhang, Z. Zhang, Environ. Int. 136 (2020) 105453.
[97]S.I. Mogal, M. Mishra, V.G. Gandhi, R.J. Tayade, Mater. Sci. Forum 734 (2012) 364–378.
[98]Q. Zhang, Appl. Catal. B Environ. 26 (2000) 207–215.
[99]W. Zhang, Y. Chen, S. Yu, S. Chen, Y. Yin, Thin Solid Films 516 (2008) 4690–4694.
[100]N. Omrani, A. Nezamzadeh-Ejhieh, Sep. Purif. Technol. 235 (2020) 116228.
[101]M.I. Litter, in: P. Boule, D.W. Bahnemann, P.K.J. Robertson (Eds.), Environ. Photochem. Part II, Springer-Verlag, Berlin/Heidelberg, 2005, 325–366.
[102]R. Leary, A. Westwood, Carbon 49 (2011) 741–772.
[103]M.D. Hernández-Alonso, F. Fresno, S. Suárez, J.M. Coronado, Energy Environ. Sci. 2 (2009) 1231-1257.
[104]M. Mehrali-Afjani, A. Nezamzadeh-Ejhieh, H. Aghaei, Chem. Phys. Lett. 759 (2020) 137873.
[105]N. Omrani, A. Nezamzadeh-Ejhieh, J. Photochem. Photobiol. Chem. 400 (2020) 112726.
[106]N. Raeisi-Kheirabadi, A. Nezamzadeh-Ejhieh, Int. J. Hydrog. Energy 45 (2020) 33381–33395.
[107]S.A. Mirsalari, A. Nezamzadeh-Ejhieh, Mater. Sci. Semicond. Process. 122 (2021) 105455.
[108]P. Bezerra, R. Cavalcante, A. Garcia, H. Wender, M. Martines, G. Casagrande, J. Giménez, P. Marco, S. Oliveira, A. Machulek Jr., J. Braz. Chem. Soc. 28 (9) (2017) 1788-1802.
[109]H.A. Foster, I.B. Ditta, S. Varghese, A. Steele, Appl. Microbiol. Biotechnol. 90 (2011) 1847–1868.
[110]Y. Cho, W. Choi, J. Photochem. Photobiol. Chem. 148 (2002) 129–135.
[111]T.S. Natarajan, H.C. Bajaj, R.J. Tayade, J. Colloid Interface Sci. 433 (2014) 104–114.
[112]J. Fang, F. Shi, J. Bu, J. Ding, S. Xu, J. Bao, Y. Ma, Z. Jiang, W. Zhang, C. Gao, W. Huang, J. Phys. Chem. C 114 (2010) 7940–7948.
[113]S.I. Mogal, V.G. Gandhi, M. Mishra, S. Tripathi, T. Shripathi, P.A. Joshi, D.O. Shah, Ind. Eng. Chem. Res. 53 (2014) 5749–5758.
[114]S. Ghattavi, A. Nezamzadeh-Ejhieh, J. Mol. Liq. 322 (2021) 114563.
[115]S. Ghattavi, A. Nezamzadeh-Ejhieh, DESALINATION WATER Treat. 166 (2019) 92–104.
[116]S. Ghattavi, A. Nezamzadeh-Ejhieh, Compos. Part B Eng. 183 (2020) 107712.
[117]S. Ghattavi, A. Nezamzadeh-Ejhieh, Int. J. Hydrog. Energy 45 (2020) 24636–24656.
[118]R. Bacsa, J. Kiwi, T. Ohno, P. Albers, V. Nadtochenko, J. Phys. Chem. B 109 (2005) 5994–6003.
[119]E. Moctezuma, B. Zermeño, E. Zarazua, L.M. Torres-Martínez, R. García, Top. Catal. 54 (2011) 496–503.
[120]J. Choi, H. Park, M.R. Hoffmann, J. Phys. Chem. C 114 (2010) 783–792.
[121]M. Nasirian, C.F. Bustillo-Lecompte, M. Mehrvar, J. Environ. Manage. 196 (2017) 487–498.
[122]L.M. Santos, W.A. Machado, M.D. França, K.A. Borges, R.M. Paniago, A.O.T. Patrocinio, A.E.H. Machado, RSC Adv. 5 (2015) 103752–103759.
[123]A. Norouzi, A. Nezamzadeh-Ejhieh, Phys. B Condens. Matter 599 (2020) 412422.
[124]A.B. Ghomi, V. Ashayeri, Iran. J. Catal. 2 (2012) 135–140.
[125]S.D. Khairnar, M.R. Patil, V.S. Shrivastava, Iran. J. Catal. 8 (2018) 143–150.
[126]M.M.J. Sadiq, A.S. Nesaraj, Iran. J. Catal. 4 (2014) 219–226.
[127]M. Samandari, A.T. Manesh, S.A. Hosseini, S. Mansouri, Iran. J. Catal. 11 (2021) 175–180.
[128]A. Sobhani-Nasab, M. Eghbali-Arani, S.M. Hosseinpour-Mashkani, F. Ahmadi, M. Rahimi-Nasrabadi, V. Ameri, Iran. J. Catal. 10 (2018) 91–99.
[129]S. Jafari, A. Nezamzadeh-Ejhieh, J. Colloid Interface Sci. 490 (2017) 478–487.
[130]R.P. Cavalcante, R.F. Dantas, B. Bayarri, O. González, J. Giménez, S. Esplugas, A. Machulek, Catal. Today 252 (2015) 27–34.
[131]L. Gao, W. Gan, S. Xiao, X. Zhan, J. Li, RSC Adv. 5 (2015) 52985–52992.
[132]H. Derikvandi, A. Nezamzadeh-Ejhieh, J. Mol. Catal. Chem. 426 (2017) 158–169.
[133]M. Sankarammal, A. Thatheyus, D. Ramya, Open J. Water Pollut. Treat. 2014 (2014) 92–100.
[134]M. Fashola, V. Ngole-Jeme, O. Babalola, Int. J. Environ. Res. Public. Health 13 (2016) 1047.
[135]C. Cervantes, J. Campos-García, S. Devars, F. Gutiérrez-Corona, H. Loza-Tavera, J.C. Torres-Guzmán, R. Moreno-Sánchez, FEMS Microbiol. Rev. 25 (2001) 335–347.
[136]A. Malik, Environ. Int. 30 (2004) 261–278.
[137]A. Fathima, J.R. Rao, Arch. Microbiol. 200 (2018) 453–462.
[138]R. Kumar, D. Bhatia, R. Singh, S. Rani, N.R. Bishnoi, Int. Biodeterior. Biodegrad. 65 (2011) 1133–1139.
[139]N.S. Kumaran, A. Sundaramanicam, S. Bragadeeswaran, J. Appl. Sci. Res. 7 (2011) 1609–1615.
[140]A. Bhattacharya, A. Gupta, Environ. Sci. Pollut. Res. 20 (2013) 6628–6637.
[141]S.A. Jafari, S. Cheraghi, M. Mirbakhsh, R. Mirza, A. Maryamabadi, CLEAN - Soil Air Water 43 (2015) 118–126.
[142]S.M. Al-Garni, K.M. Ghanem, A.S. Ibrahim, Afr. J. Biotechnol. 9 (2010) 6413–6421.
[143]A.H. Caravelli, L. Giannuzzi, N.E. Zaritzky, J. Hazard. Mater. 156 (2008) 214–222.
[144]S. Murugavelh, K. Mohanty, Environ. Eng. Manag. J. 13 (2014) 281–287.
[145]S. Zhang, S.A. Crow, Appl. Environ. Microbiol. 67 (2001) 4030–4035.
[146]B Thippeswamy, C K Shivakumar, M Krishnappa, PubMed 33 (2012) 1063–1068.
[147]P.C. Mane, A.B. Bhosle, Int. J. Environ. Res. 6 (2012)571-576.
[148]W. Zhang, B. Xiong, L. Chen, K. Lin, X. Cui, H. Bi, M. Guo, W. Wang, Environ. Toxicol. Pharmacol. 36 (2013) 51–57.
[149]L. Regaldo, S. Gervasio, H. Troiani, A.M. Gagneten, J. Algal Biomass Util. 4 (2013) 59–66.
[150]R. Fagan, D.E. McCormack, D.D. Dionysiou, S.C. Pillai, Mater. Sci. Semicond. Process. 42 (2016) 2–14.
[151]I. Paspaltsis, K. Kotta, R. Lagoudaki, N. Grigoriadis, I. Poulios, T. Sklaviadis, J. Gen. Virol. 87 (2006) 3125–3130.
[152]R. Nakano, M. Hara, H. Ishiguro, Y. Yao, T. Ochiai, K. Nakata, T. Murakami, J. Kajioka, K. Sunada, K. Hashimoto, A. Fujishima, Y. Kubota, Catalysts 3 (2013) 310–323.
[153]D.J. Giannantonio, J.C. Kurth, K.E. Kurtis, P.A. Sobecky, Int. Biodeterior. 8 (2009) 252-259.
[154]M. Sökmen, S. Değerli, A. Aslan, Exp. Parasitol. 119 (2008) 44–48.
[155]E. Ruiz‐Hitzky, M. Darder, B. Wicklein, C. Ruiz‐Garcia, R. Martín‐Sampedro, G. del Real, P. Aranda, Adv. Healthc. Mater. 9 (2020) 2000979.
[156]H. Choi, M.G. Antoniou, M. Pelaez, Environ. Sci. Technol. 41 (2007) 7530-7535.
[157]X. He, A. Wang, P. Wu, S. Tang, Y. Zhang, L. Li, P. Ding, Sci. Total Environ. 743 (2020) 140694.
[158]J. Ananpattarachai, Y. Boonto, P. Kajitvichyanukul, Environ. Sci. Pollut. Res. 23 (2016) 4111–4119.
[159]Y. Wang, Y. Wu, H. Yang, X. Xue, Z. Liu, Vacuum 131 (2016) 58–64.
[160]N.K. Eswar, P.C. Ramamurthy, G. Madras, New J. Chem. 40 (2016) 3464–3475.
[161]T. Feng, J. Liang, Z. Ma, M. Li, M. Tong, Colloids Surf. B Biointerfaces 167 (2018) 275–283.
[162]C.-K. Huang, T. Wu, C.-W. Huang, C.-Y. Lai, M.-Y. Wu, Y.-W. Lin, Appl. Surf. Sci. 399 (2017) 10–19.
[163]J. Liang, F. Liu, J. Deng, M. Li, M. Tong, Water Res. 123 (2017) 632–641.
[164]J. Xu, Z. Wang, Y. Zhu, ACS Appl. Mater. Interfaces 9 (2017) 27727–27735.
[165]W. Bing, Z. Chen, H. Sun, P. Shi, N. Gao, J. Ren, X. Qu, Nano Res. 8 (2015) 1648–1658.
[166]Y. Li, Y. Li, S. Ma, P. Wang, Q. Hou, J. Han, S. Zhan, J. Hazard. Mater. 338 (2017) 33–46.
[167]N.S. Ahmad, N. Abdullah, F. Yasin, Bioresource 4 (2019) 8866–8878.
[168]K.-P. Yu, Y.-T. Huang, S.-C. Yang, J. Hazard. Mater. 261 (2013) 155–162.
[169]M. Miyauchi, K. Sunada, K. Hashimoto, Catalysts 10 (2020) 1093.
[170]P.-C. Maness, S. Smolinski, D.M. Blake, Z. Huang, E.J. Wolfrum, W.A. Jacoby, Appl. Environ. Microbiol. 65 (1999) 4094–4098.
[171]C. Guillard, T.-H. Bui, C. Felix, V. Moules, B. Lina, P. Lejeune, Comptes Rendus Chim. 11 (2008) 107–113.
[172]H. Takashima, Y. lida, K. Nakamura, Y. Kanno, in: 2006 IEEE Int. Conf. Syst. Man Cybern., IEEE, Taipei, Taiwan, 2006, pp. 1413–1418.
[173]Y. Kikuchi, K. Sunada, T. Iyoda, K. Hashimoto, A. Fujishima, J. Photochem. Photobiol. Chem. 106 (1997) 51–56.
[174]C. Hu, J. Guo, J. Qu, X. Hu, Langmuir 23 (2007) 4982–4987.
[175]T. Saito, T. Iwase, J. Horie, T. Morioka, J. Photochem. Photobiol. B 14 (1992) 369–379.
[176]W. Kangwansupamonkon, V. Lauruengtana, S. Surassmo, U. Ruktanonchai, Nanomedicine Nanotechnol. Biol. Med. 5 (2009) 240–249.
[177]K. Sunada, T. Watanabe, K. Hashimoto, J. Photochem. Photobiol. Chem. 156 (2003) 227–233.
[178]K. Sunada, Y. Kikuchi, K. Hashimoto, A. Fujishima, Environ. Sci. Technol. 32 (1998) 726–728.
[179]M. Suwalsky, C. Schneider, H.D. Mansilla, J. Kiwi, J. Photochem. Photobiol. B 78 (2005) 253–258.
[180]J. Kiwi, V. Nadtochenko, J. Phys. Chem. B 108 (2004) 17675–17684.
[181]V. Nadtochenko, N. Denisov, O. Sarkisov, D. Gumy, C. Pulgarin, J. Kiwi, J. Photochem. Photobiol. Chem. 181 (2006) 401–407.
[182]J. Kiwi, V. Nadtochenko, Langmuir 21 (2005) 4631–4641.
[183]J. Hou, L. Wang, C. Wang, S. Zhang, H. Liu, S. Li, X. Wang, J. Environ. Sci. 75 (2019) 40–53.
[184]Y. Chen, D.D. Dionysiou, Appl. Catal. B Environ. 62 (2006) 255–264.
[185]K.-J. Hwang, J.-W. Lee, W.-G. Shim, H.D. Jang, S.-I. Lee, S.-J. Yoo, Adv. Powder Technol. 23 (2012) 414–418.
[186]O.O. Kelyp, I.S. Petrik, V.S. Vorobets, N.P. Smirnova, V.S. G.Ya. Kolbasov, Chem. Phys. Surf. Technol. 4 (2015) 105–112.
[187]Y. Chen, A. Lin, F. Gan, Powder Technol. 167 (2006) 109–116.
[188]X. Zhang, X. Li, J. Wu, R. Yang, L. Tian, Z. Zhang, J. Sol-Gel Sci. Technol. 51 (2009) 1–3.
[189]R. Nandanwar, P. Singh, F.Z. Haque, Int. J. Chem. Phys. Sci. 3 (2014) 40–45.
[190]W. Nachit, S. Touhtouh, Z. Ramzi, M. Zbair, A. Eddiai, M. Rguiti, A. Bouchikhi, A. Hajjaji, K. Benkhouja, Mol. Cryst. Liq. Cryst. 627 (2016) 170–175.
[191]Z. Adriana, Recent Pat. Eng. 2 (2008) 157–164.
[192]A. Zielińska, E. Kowalska, J.W. Sobczak, I. Łącka, M. Gazda, B. Ohtani, J. Hupka, A. Zaleska, Sep. Purif. Technol. 72 (2010) 309–318.
[193]S. Esposito, Materials 12 (2019) 668.
[194]S.A. Yazid, Z.M. Rosli, J.M. Juoi, J. Mater. Res. Technol. 8 (2019) 1434–1439.
[195]C. Guillard, B. Beaugiraud, C. Dutriez, J.-M. Herrmann, H. Jaffrezic, N. Jaffrezic-Renault, M. Lacroix, Appl. Catal. B Environ. 39 (2002) 331–342.
[196]S.M. Lam, J.C. Sin, A.R. Mohamed, Recent Pat. Chem. Eng. 1 (2010) 209–219.
[197]A. Zyoud, A. Zu’bi, M.H.S. Helal, D. Park, G. Campet, H.S. Hilal, J. Environ. Health Sci. Eng. 13 (2015) 46.
[198]L. Hu, T. Yoko, H. Kozuka, S. Sakka, Thin Solid Films 219 (1992) 18–23.
[199]Y. Zhu, L. Zhang, C. Gao, L. Cao, J. Mater. Sci. 35 (2000) 4049–4054.
[200]I. El Saliby, Y. Okour, H.K. Shon, J. Kandasamy, W.E. Lee, J.-H. Kim, J. Ind. Eng. Chem. 18 (2012) 1033–1038.
[201]V. Štengl, S. Bakardjieva, J. Bludská, J. Mater. Sci. 46 (2011) 3523–3536.
[202]F. Chen, X. Yang, Q. Wu, Build. Environ. 44 (2009) 1088–1093.
[203]T. Ohno, K. Sarukawa, K. Tokieda, M. Matsumura, J. Catal. 203 (2001) 82–86.
[204]V. Štengl, V. Houšková, N. Murafa, S. Bakardjieva, Ceram. – Silikáty 54 (2010) 368–378.
[205]H. Mehranpour, M. Askari, M.S. Ghamsari, H. Farzalibeik, J. Nanomater. 2010 (2010) 1–5.
[206]D. Ganguli, Bull. Mater. Sci. 15 (1992) 421–430.
[207]S. Basu, P. Bhattacharyya, Sens. Lett. 9 (2011) 1575–1591.
[208]D.-S. Seo, J.-K. Lee, H. Kim, J. Cryst. Growth 229 (2001) 428–432.
[209]P.J. Kelly, R.D. Arnell, Vacuum 56 (2000) 159–172.
[210]X. Fu, S. Qutubuddin, Colloids Surf. Physicochem. Eng. Asp. 179 (2001) 65–70.
[211]G. Fu, P.S. Vary, C.-T. Lin, J. Phys. Chem. B 109 (2005) 8889–8898.
[212]R. Najjar, M. Shokri, S. Farsadi, Desalination Water Treat. 54 (2015) 2581–2591.
[213]Y. Wang, H. Cheng, Y. Hao, J. Ma, W. Li, S. Cai, Thin Solid Films 349 (1999) 120–125.
[214]A.M. Tripathi, R.G. Nair, S.K. Samdarshi, Sol. Energy Mater. Sol. Cells 94 (2010) 2379–2385.
[215]F. Wu, X. Li, Z. Wang, C. Xu, H. He, A. Qi, X. Yin, H. Guo, Hydrometallurgy 140 (2013) 82–88.
[216]T.S. Mackey, J. Met. 46 (1994) 59–64.
[217]T.A.I. Lasheen, Hydrometallurgy 76 (2005) 123–129.
[218]R. Razavi, S. Hosseini, M. Ranjbar, Iran. J. Chem. Chem. Eng 33 (2014) 29–36.
[219]R.K. Biswas, M.G.K. Mondal, Hydrometallurgy 17 (1987) 385–390.
[220]Z. Li, Z. Wang, G. Li, Powder Technol. 287 (2016) 256–263.
[221]E.M. Mahdi, M.H. Abdul Shukor, Y.M.S. Meor, P. Wilfred, J. Nano Res. 21 (2012) 71–76.
[222]D. Wibowo, Int. J. ChemTech Res. 9 (2016) 483-491.
[223]M.R. Lanyon, T. Lwin, R.R. Merritt, Hydrometallurgy 51 (1999) 299–323.
[224]W. Jonglertjunya, T. Rubcumintara, Asia-Pac. J. Chem. Eng. 8 (2013) 323–330.
[225]A.M. Amer, Hydrometallurgy 67 (2002) 125–133.
[226]F. Wu, X. Li, Z. Wang, L. Wu, H. Guo, X. Xiong, X. Zhang, X. Wang, Int. J. Miner. Process. 98 (2011) 106–112.
[227]L. Wu, X. Li, Z. Wang, H. Guo, X. Wang, F. Wu, J. Fang, Z. Wang, L. Li, J. Alloys Compd. 506 (2010) 271–278.
[228]X.-Y. Chuan, A.H. Lu, J. Chen, N. Li, Y.J. Guo, Mineral. Petrol. 93 (2008) 143–152.
[229]N.G. Kostova, M. Achimovičová, A. Eliyas, N. Velinov, V. Blaskov, I. Stambolova, E. Gock, Bulg. Chem. Commun. 47 (2015) 317–322.
[230]N.S. Rosli, C.A.C. Abdullah, R. Hazan, Results Phys. 11 (2018) 72–78.
[231]X. Wang, X. Li, Z. Wang, L. Wu, P. Yue, H. Guo, F. Wu, T. Ma, Powder Technol. 204 (2010) 198–202.
[232]T. Tao, Y. Chen, D. Zhou, H. Zhang, S. Liu, R. Amal, N. Sharma, A.M. Glushenkov, Chem. - Eur. J. 19 (2013) 1091–1096.
[233]Q.-H. Zhang, L. Gao, J.-K. Guo, Nanostructured Mater. 11 (1999) 1293–1300.
[234]J. Zhang, S. Yan, L. Fu, F. Wang, M. Yuan, G. Luo, Q. Xu, X. Wang, C. Li, Chin. J. Catal. 32 (2011) 983–991.
[235]S. Mourdikoudis, R.M. Pallares, N.T.K. Thanh, Nanoscale 10 (2018) 12871–12934.
[236]R. Nair, S. Paul, S.K. Samdarshi, Sol. Energy Mater. Sol. Cells 95 (2011) 1901–1907.
[237]M. Khairy, W. Zakaria, Egypt. J. Pet. 23 (2014) 419–426.
[238] N.D. Israelsen, C. Hanson, E. Vargis, Sci. World J. 2015 (2015) 1–12.
[239]A. Mattsson, L. Österlund, J. Phys. Chem. C 114 (2010) 14121–14132.
[240]Q. Yin, J. Xiang, X. Wang, X. Guo, T. Zhang, J. Exp. Nanosci. 11 (2016) 1127–1137.
[241]A. Mudhafar Mohammed, M. Sebek, C. Kreyenschulte, H. Lund, J. Rabeah, P. Langer, J. Strunk, N. Steinfeldt, J. Sol-Gel Sci. Technol. 91 (2019) 539–551.
[242]M. Ahamed, M.A.M. Khan, M.J. Akhtar, H.A. Alhadlaq, A. Alshamsan, Sci. Rep. 7 (2017) 17662.
[243]M. Chi, X. Sun, A. Sujan, Z. Davis, B.J. Tatarchuk, Fuel 238 (2019) 454–461.
[244]J.H. Lee, Y.S. Yang, J. Eur. Ceram. Soc. 25 (2005) 3573–3578.
[245]Y.-C. Lin, S.-H. Liu, H.-R. Syu, T.-H. Ho, Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 95 (2012) 300–304.
[246]J. Chang, R.D. Taylor, R.A. Davidson, A. Sharmah, T. Guo, J. Phys. Chem. A 120 (2016) 2815–2823.
[247]C.P. Kumar, N.O. Gopal, T.C. Wang, M.-S. Wong, S.C. Ke, J. Phys. Chem. B 110 (2006) 5223–5229.
[248]Alamgir, W. Khan, S. Ahmad, N. Ahammed, A.H. Naqvi, in: Shimla, India, 2015, p. 080001.
[249]S. Wang, Y. Gao, Y. Qi, A. Li, F. Fan, C. Li, J. Catal. 354 (2017) 250–257.
[250]A. Miyoshi, J.J.M. Vequizo, S. Nishioka, Y. Kato, M. Yamamoto, S. Yamashita, T. Yokoi, A. Iwase, S. Nozawa, A. Yamakata, T. Yoshida, K. Kimoto, A. Kudo, K. Maeda, Sustain. Energy Fuels 2 (2018) 2025–2035.
[251]L. Sinatra, A.P. LaGrow, W. Peng, A.R. Kirmani, A. Amassian, H. Idriss, O.M. Bakr, J. Catal. 322 (2015) 109–117.
[252]D.S. Shinde, P.D. Bhange, S.S. Arbuj, J.-Y. Kim, J.-H. Bae, K.-W. Nam, S.N. Tayade, D.S. Bhange, Int. J. Hydrog. Energy 45 (2020) 8605–8617.
[253]Y.M. Hunge, M.A. Mahadik, A.V. Moholkar, C.H. Bhosale, Ultrason. Sonochem. 35 (2017) 233–242.
[254]P. Niu, G. Wu, P. Chen, H. Zheng, Q. Cao, H. Jiang, Front. Chem. 8 (2020) 172.
[255]N. Raghavan, S. Thangavel, Y. Sivalingam, G. Venugopal, Appl. Surf. Sci. 449 (2018) 712–718.
[256]M.S. Kumar, K.Y. Yasoda, D. Kumaresan, N.K. Kothurkar, S.K. Batabyal, Mater. Res. Express 5 (2018) 075502.
[257]M. Pawar, S. Topcu Sendoğdular, P. Gouma, J. Nanomater. 2018 (2018) 1–13.
[258]H. Chu, W. Lei, X. Liu, J. Li, W. Zheng, G. Zhu, C. Li, L. Pan, C. Sun, Appl. Catal. Gen. 521 (2016) 19–25.
[259]W. Sangchay, J. Nanotechnol. 2017 (2017) 1–7.
[260]M.F. La Russa, A. Macchia, S.A. Ruffolo, F. De Leo, M. Barberio, P. Barone, G.M. Crisci, C. Urzì, Int. Biodeterior. Biodegrad. 96 (2014) 87–96.
[261]G. Li, B. Wang, W.Q. Xu, Y. Han, Q. Sun, Dyes Pigments 155 (2018) 265–275.
[262]M.H.H. Mahmoud, A.A. Ismail, M.M.S. Sanad, Chem. Eng. J. 187 (2012) 96–103.
[263]Y.R. Smith, K. Joseph Antony Raj, V. (Ravi) Subramanian, B. Viswanathan, Colloids Surf. Physicochem. Eng. Asp. 367 (2010) 140–147.
[264]N.T. Lan, V.H. Anh, H.D. An, N.P. Hung, D.N. Nhiem, B. Van Thang, P.K. Lieu, D.Q. Khieu, J. Nanomater. 2020 (2020) 1–14.
[265]J.A. Torres-Luna, N.R. Sanabria, J.G. Carriazo, Powder Technol. 302 (2016) 254–260.
[266]S. Zhao, D. Kang, Z. Yang, Y. Huang, Appl. Surf. Sci. 488 (2019) 522–530.
[267]R.-B. Lee, J.-C. Juan, C.-W. Lai, K.-M. Lee, Chin. Chem. Lett. 28 (2017) 1613–1618.
[268]P. García-Muñoz, G. Pliego, J.A. Zazo, B. Barbero, A. Bahamonde, J.A. Casas, Chem. Eng. J. 318 (2017) 89–94.
[269]D. Xia, H. He, H. Liu, Y. Wang, Q. Zhang, Y. Li, A. Lu, C. He, P.K. Wong, Appl. Catal. B Environ. 238 (2018) 70–81.
[270]S. Kalantari, G. Emtiazi, J. Nanosci. Curr. Res. 01 (2016).