Synthesis and Characterization of Hybrid Dual Metallic Complexes of Schiff Base Containing (Cd and Mn/Fe/Co/Ni) Derived from Isatin and 1,4-Phenylenediamine As Novel Organometallic Catalysts for Rapid and Efficient Epoxidation of Alkenes
Subject Areas : Iranian Journal of CatalysisAbeer Mohammed 1 , Jassim Alyass 2 , Khalaf Khallow 3
1 - Department of Chemistry, College of Education for Pure Sciences, University of Mosul, Iraq
2 - Department of Chemistry, College of Education for Pure Sciences, University of Mosul, Iraq
3 - Department of Chemistry, College of Education for Pure Sciences, University of Mosul, Iraq
Keywords:
Abstract :
[1] Z. Yan, J. Tian, K. Wang, K.D.P. Nigam, G. Luo, Microreaction processes for synthesis and utilization of epoxides: A review, Chem. Eng. Sci., 229 (2021) 116071.
[2] L. Guo, K.J. Lamb, M. North, Recent developments in organocatalysed transformations of epoxides and carbon dioxide into cyclic carbonates, Green Chem., 23 (2021) 77-118.
[3] G.-G. Gu, L.-Y. Wang, R. Zhang, T.-J. Yue, B.-H. Ren, W.-M. Ren, Synthesis of polyethers from epoxides via a binary organocatalyst system, Polymer Chemistry, 12 (2021) 6436-6443.
[4] S.M. Sadeghzadeh, R. Zhiani, S. Emrani, Spirulina (Arthrospira) platensis Supported Ionic Liquid as a Catalyst for the Synthesis of 3-Aryl-2-oxazolidinones from Carbon Dioxide, Epoxide, Anilines, Catal. Lett., 148 (2018) 119-124.
[5] B. Wang, E.H.M. Elageed, D. Zhang, S. Yang, S. Wu, G. Zhang, G. Gao, One-Pot Conversion of Carbon Dioxide, Ethylene Oxide, and Amines to 3-Aryl-2-oxazolidinones Catalyzed with Binary Ionic Liquids, ChemCatChem, 6 (2014) 278-283.
[6] L. Wang, H. Li, S. Xin, P. He, Y. Cao, F. Li, X. Hou, Highly efficient synthesis of diethyl carbonate via one-pot reaction from carbon dioxide, epoxides and ethanol over KI-based binary catalyst system, Appl. Catal., A, 471 (2014) 19-27.
[7] H.V. Ashburn, A.R. Collett, C.L. Lazzeli, Some β-Alkoxyethyl Esters of p-Aminobenzoic Acid, J. Am. Chem. Soc., 57 (1935) 1862-1863.
[8] G. Dannhardt, W. Kiefer, G. Lambrecht, S. Laufer, E. Mutschler, J. Schweiger, H.G. Striegel, Regioisomeric 3-, 4- and 5-aminomethyl isoxazoles: synthesis and muscarinic activity, Eur. J. Med. Chem., 30 (1995) 839-850.
[9] L.E.J. Kennis, F.P. Bischoff, C.J. Mertens, C.J. Love, F.A.F. Van den Keybus, S. Pieters, M. Braeken, A.A.H.P. Megens, J.E. Leysen, New 2-substituted 1,2,3,4-tetrahydrobenzofuro[3,2-c]pyridine having highly active and potent central α2-antagonistic activity as potential antidepressants, Bioorg. Med. Chem. Lett., 10 (2000) 71-74.
[10] H. Zahn, R. Krzikalla, Synthese von einheitlichen, linearen oligoestern vom poly-glykol-terephthalat-typ, Die Makromolekulare Chemie, 23 (1957) 31-53.
[11] W.-L. Dai, L. Chen, S.-F. Yin, W.-H. Li, Y.-Y. Zhang, S.-L. Luo, C.-T. Au, High-Efficiency Synthesis of Cyclic Carbonates from Epoxides and CO2 over Hydroxyl Ionic Liquid Catalyst Grafted onto Cross-Linked Polymer, Catal. Lett., 137 (2010) 74-80.
[12] M. North, C. Young, Reducing the Cost of Production of Bimetallic Aluminium Catalysts for the Synthesis of Cyclic Carbonates, ChemSusChem, 4 (2011) 1685-1693.
[13] W. Cheng, Z. Fu, J. Wang, J. Sun, S. Zhang, ZnBr2-Based Choline Chloride Ionic Liquid for Efficient Fixation of CO2 to Cyclic Carbonate, Synth. Commun., 42 (2012) 2564-2573.
[14] D.-Y. Wang, R. Liu, W. Guo, G. Li, Y. Fu, Recent advances of organometallic complexes for rechargeable batteries, Coord. Chem. Rev., 429 (2021) 213650.
[15] A. Asif, R.Y. Nadeem, M.A. Iqbal, S. Bibi, M. Irfan, Organometallic complexes of neodymium: an overview of synthetic methodologies based on coordinating elements, Reviews in Inorganic Chemistry, 41 (2021) 77-130.
[16] P.T. Truong, S.G. Miller, E.J. McLaughlin Sta. Maria, M.A. Bowring, Large Isotope Effects in Organometallic Chemistry, Chemistry – A European Journal, 27 (2021) 14800-14815.
[17] M.C. Stipp, A. Acco, Involvement of cytochrome P450 enzymes in inflammation and cancer: a review, Cancer Chemother. Pharmacol., 87 (2021) 295-309.
[18] D. Machalz, S. Pach, M. Bermudez, M. Bureik, G. Wolber, Structural insights into understudied human cytochrome P450 enzymes, Drug Discovery Today, 26 (2021) 2456-2464.
[19] B. Large, N.G. Baranska, R.L. Booth, K.S. Wilson, A.-K. Duhme-Klair, Artificial metalloenzymes: The powerful alliance between protein scaffolds and organometallic catalysts, Current Opinion in Green and Sustainable Chemistry, 28 (2021) 100420.
[20] P. Ebensperger, C. Jessen-Trefzer, Artificial metalloenzymes in a nutshell: the quartet for efficient catalysis, Biol. Chem., (2021).
[21] V. Carreras, N. Tanbouza, T. Ollevier, The Power of Iron Catalysis in Diazo Chemistry, Synthesis, 53 (2021) 79-94.
[22] N. Awasthi, R. Yadav, D. Kumar, Metabolism of 8-aminoquinoline (8AQ) primaquine via aromatic hydroxylation step mediated by cytochrome P450 enzyme using density functional theory, J. Organomet. Chem., 957 (2022) 122154.
[23] L. Liu, A. Corma, Isolated metal atoms and clusters for alkane activation: Translating knowledge from enzymatic and homogeneous to heterogeneous systems, Chem, 7 (2021) 2347-2384.
[24] D. Sadhukhan, P. Ghosh, S. Ghanta, Spectroscopic evidence of chirality in tetranuclear Cu(II)-Schiff base complexes, catalytic potential for oxidative kinetic resolution of racemic benzoin, Inorganic and Nano-Metal Chemistry, 51 (2021) 1714-1724.
[25] T. Linker, The Jacobsen–Katsuki Epoxidation and Its Controversial Mechanism, Angewandte Chemie International Edition in English, 36 (1997) 2060-2062.
[26] T. Hamada, T. Fukuda, H. Imanishi, T. Katsuki, Mechanism of one oxygen atom transfer from oxo (salen) manganese(V) complex to olefins, Tetrahedron, 52 (1996) 515-530.
[27] V. Mirkhani, S. Tangestaninejad, M. Moghadam, M. Moghbel, Rapid and efficient oxidative decarboxylation of carboxylic acids with sodium periodate catalyzed by manganese (III) Schiff base complexes, Bioorg. Med. Chem., 12 (2004) 903-906.
[28] S. Tangestaninejad, M. Moghadam, V. Mirkhani, I. Mohammadpoor-Baltork, M.S. Saeedi, Efficient epoxidation of alkenes with sodium periodate catalyzed by reusable manganese(III) salophen supported on multi-wall carbon nanotubes, Appl. Catal., A, 381 (2010) 233-241.
[29] P. Campitelli, M. Aschi, C. Di Nicola, F. Marchetti, R. Pettinari, M. Crucianelli, Ionic liquids vs conventional solvents: A comparative study in the selective catalytic oxidations promoted by oxovanadium(IV) complexes, Appl. Catal., A, 599 (2020) 117622.
[30] S. Roy, Saswati, S. Lima, S. Dhaka, M.R. Maurya, R. Acharyya, C. Eagle, R. Dinda, Synthesis, structural studies and catalytic activity of a series of dioxidomolybdenum(VI)-thiosemicarbazone complexes, Inorg. Chim. Acta, 474 (2018) 134-143.
[31] M. Karman, M. Wera, G. Romanowski, Chiral cis-dioxidomolybdenum(VI) complexes with Schiff bases possessing two alkoxide groups: Synthesis, structure, spectroscopic studies and their catalytic activity in sulfoxidation and epoxidation, Polyhedron, 187 (2020) 114653.
[32] H. Zakeri, S. Rayati, G. Zarei, A. Parsa, F. Adhami, Mn(II)-Schiff base complex immobilized onto MCM-41 matrix as a heterogeneous catalyst for epoxidation of alkenes, Iran. J. Catal., 10 (2020) 71-78.
[33] A. Farokhi, H. Hosseini Monfared, Highly efficient asymmetric epoxidation of olefins with a chiral manganese-porphyrin covalently bound to mesoporous SBA-15: Support effect, J. Catal., 352 (2017) 229-238.
[34] Z.H. Chohan, H. Pervez, S. Kausar, C.T. Supuran, Synthesis and Charactrization of Antibacterial Co(II), Cu(II), Ni(II), AND Zn(II) Complexes of Acylhydrazine Derived Pyrrolyl Compounds, Synth. React. Inorg. Met.-Org. Chem., 32 (2002) 529-543.
[35] P. Jain, K.K. Chaturvedi, Complexes of Cu(II), Ni(II) and Co(II) with sulphamerazine salicylaldimine, J. Inorg. Nucl. Chem., 39 (1977) 901-903.
[36] P.P. Dholakiya, M.N. Patel, Synth. React. Inorg. Met.-Org. Chem., 32 (2002) 753-762.
[37] M.I. Khan, A. Khan, I. Hussain, M.A. Khan, S. Gul, M. Iqbal, R. Inayat Ur, F. Khuda, Spectral, XRD, SEM and biological properties of new mononuclear Schiff base transition metal complexes, Inorg. Chem. Commun., 35 (2013) 104-109.
[38] A.H. Kianfar, W.A.K. Mahmood, M. Dinari, M.H. Azarian, F.Z. Khafri, Novel nanohybrids of cobalt(III) Schiff base complexes and clay: Synthesis and structural determinations, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 127 (2014) 422-428.
[39] H. Naeimi, J. Safari, A. Heidarnezhad, Synthesis of Schiff base ligands derived from condensation of salicylaldehyde derivatives and synthetic diamine, Dyes Pigm., 73 (2007) 251-253.
[40] M. Fan, S. Ma, N. Ferdousi, Z. Dai, J.L. Woo, Modeling of Carbonyl/Ammonium Sulfate Aqueous Brown Carbon Chemistry via UV/Vis Spectral Decomposition, Atmosphere, 11 (2020) 358.
[41] A.J. Atkin, J.M. Lynam, B.E. Moulton, P. Sawle, R. Motterlini, N.M. Boyle, M.T. Pryce, I.J.S. Fairlamb, Modification of the deoxy-myoglobin/carbonmonoxy-myoglobin UV-vis assay for reliable determination of CO-release rates from organometallic carbonyl complexes, Dalton Trans., 40 (2011) 5755-5761.
[42] M.H. Powelson, B.M. Espelien, L.N. Hawkins, M.M. Galloway, D.O. De Haan, Brown Carbon Formation by Aqueous-Phase Carbonyl Compound Reactions with Amines and Ammonium Sulfate, Environ. Sci. Technol., 48 (2014) 985-993.
[43] E. Dmitrieva, M. Rosenkranz, J.S. Danilova, E.A. Smirnova, M.P. Karushev, I.A. Chepurnaya, A.M. Timonov, Radical formation in polymeric nickel complexes with N2O2 Schiff base ligands: An in situ ESR and UV–vis–NIR spectroelectrochemical study, Electrochim. Acta, 283 (2018) 1742-1752.
[44] N. Raman, J. Dhaveethu Raja, A. Sakthivel, Synthesis, spectral characterization of Schiff base transition metal complexes: DNA cleavage and antimicrobial activity studies, J. Chem. Sci., 119 (2007) 303-310.
[45] E. Yousif, A. Majeed, K. Al-Sammarrae, N. Salih, J. Salimon, B. Abdullah, Metal complexes of Schiff base: Preparation, characterization and antibacterial activity, Arabian Journal of Chemistry, 10 (2017) S1639-S1644.
[46] N. Raman, A. Sakthivel, K. Rajasekaran, Synthesis and Spectral Characterization of Antifungal Sensitive Schiff Base Transition Metal Complexes, Mycobiology, 35 (2007) 150-153.
[47] S. Haghshenas Kashani, M. Moghadam, S. Tangestaninejad, V. Mirkhani, I. Mohammadpoor-Baltork, Ruthenium Nanoparticles Immobilized on Nano-silica Functionalized with Thiol-Based Dendrimer: A Nanocomposite Material for Oxidation of Alcohols and Epoxidation of Alkenes, Catal. Lett., 148 (2018) 1110-1123.
[48] M. Zakeri, M. Moghadam, I. Mohammadpoor-Baltork, S. Tangestaninejad, V. Mirkhani, A.R. Khosropour, Multi-wall carbon nanotube supported manganese(III)tetraphenylporphyrin: efficient catalysts for epoxidation of alkenes with NaIO4 under various reaction conditions, J. Coord. Chem., 65 (2012) 1144-1157.
[49] M. Moghadam, I. Mohammadpoor-Baltork, S. Tangestaninejad, V. Mirkhani, H. Kargar, N. Zeini-Isfahani, Manganese(III) porphyrin supported on multi-wall carbon nanotubes: A highly efficient and reusable biomimetic catalyst for epoxidation of alkenes with sodium periodate, Polyhedron, 28 (2009) 3816-3822.