Preparation and characterization of a dual acidic Ionic Liquid functionalized Graphene Oxide nanosheets as a Heterogeneous Catalyst for the Synthesis of pyrimido[4,5-b] quinolines in water
Subject Areas : Iranian Journal of CatalysisMohanad Saleh 1 , Ghufran Sadeek 2 , Shakir Saied 3
1 - Department of Chemistry, College of Education for pure Science, Mosul University, Ministry of High Education and Scientific Research, Mosul, Iraq
2 - Department of Chemistry, College of Education for pure Science, Mosul University, Ministry of High Education and Scientific Research, Mosul, Iraq
3 - Department of Medical Laboratory Techniques, Al-Noor University College, Iraq
Keywords:
Abstract :
[1] Y. Abouelhassan, A.T. Garrison, G.M. Burch, W. Wong, V.M. Norwood IV, R.W. Huigens III, Discovery of quinoline small molecules with potent dispersal activity against methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis biofilms using a scaffold hopping strategy, Bioorg. Med. Chem. Lett., 24 (2014) 5076-5080.
[2] Y. Abouelhassan, A.T. Garrison, F. Bai, V.M. Norwood IV, M.T. Nguyen, S. Jin, R.W. Huigens III, A phytochemical–halogenated quinoline combination therapy strategy for the treatment of pathogenic bacteria, ChemMedChem, 10 (2015) 1157-1162.
[3] M.A.A. Al-Bari, Chloroquine analogues in drug discovery: new directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases, J. Antimicrob. Chemother., 70 (2015) 1608-1621.
[4] I. Aleksić, S. Šegan, F. Andric, M. Zlatović, I. Moric, D.M. Opsenica, L. Senerovic, Long-chain 4-aminoquinolines as quorum sensing inhibitors in Serratia marcescens and Pseudomonas aeruginosa, ACS Chem. Biol., 12 (2017) 1425-1434.
[5] F. Jalili, M. Zarei, M.A. Zolfigol, S. Rostamnia, A.R. Moosavi-Zare, SBA-15/PrN (CH2PO3H2) 2 as a novel and efficient mesoporous solid acid catalyst with phosphorous acid tags and its application on the synthesis of new pyrimido [4, 5-b] quinolones and pyrido [2, 3-d] pyrimidines via anomeric based oxidation, Microporous Mesoporous Mater., 294 (2020) 109865.
[6] F. Shirini, M.S.N. Langarudi, N. Daneshvar, N. Jamasbi, M. Irankhah-Khanghah, Preparation and characterization of [H2-DABCO][ClO4] 2 as a new member of DABCO-based ionic liquids for the synthesis of pyrimido [4, 5-b]-quinoline and pyrimido [4, 5-d] pyrimidine derivatives, J. Mol. Struct., 1161 (2018) 366-382.
[7] F. Shirini, M.S.N. Langarudi, N. Daneshvar, M. Mashhadinezhad, N. Nabinia, Preparation of a new DABCO-based ionic liquid and investigation on its application in the synthesis of benzimidazoquinazolinone and pyrimido [4, 5-b]-quinoline derivatives, J. Mol. Liq., 243 (2017) 302-312.
[8] H. Sepehrmansouri, M. Zarei, M.A. Zolfigol, A.R. Moosavi-Zare, S. Rostamnia, S. Moradi, Multilinker phosphorous acid anchored En/MIL-100 (Cr) as a novel nanoporous catalyst for the synthesis of new N-heterocyclic pyrimido [4, 5-b] quinolines, Molecular Catalysis, 481 (2020) 110303.
[9] A.K. Panday, R. Mishra, A. Jana, T. Parvin, L.H. Choudhury, Synthesis of pyrimidine fused quinolines by ligand-free copper-catalyzed domino reactions, J. Org. Chem., 83 (2018) 3624-3632.
[10] F. Osanlou, F. Nemati, S. Sabaqian, An eco-friendly and magnetized biopolymer cellulose-based heterogeneous acid catalyst for facile synthesis of functionalized pyrimido [4, 5-b] quinolines and indeno fused pyrido [2, 3-d] pyrimidines in water, Res. Chem. Intermed., 43 (2017) 2159-2174.
[11] D.M. Patel, H.J. Patel, J.M. Padrón, H.M. Patel, A novel substrate directed multicomponent reaction for the syntheses of tetrahydro-spiro [pyrazolo [4, 3-f] quinoline]-8, 5′-pyrimidines and tetrahydro-pyrazolo [4, 3-f] pyrimido [4, 5-b] quinolines via selective multiple C–C bond formation under metal-free conditions, RSC Adv., 10 (2020) 19600-19609.
[12] A. Zare, N. Lotfifar, M. Dianat, Preparation, characterization and application of nano-[Fe3O4@-SiO2@ R-NHMe2][H2PO4] as a novel magnetically recoverable catalyst for the synthesis of pyrimido [4, 5-b] quinolines, J. Mol. Struct., 1211 (2020) 128030.
[13] A. Zare, M. Dianat, M.M. Eskandari, A novel organic–inorganic hybrid material: production, characterization and catalytic performance for the reaction of arylaldehydes, dimedone and 6-amino-1, 3-dimethyluracil, New J. Chem., 44 (2020) 4736-4743.
[14] R. Singha, P. Basak, M. Bhattacharya, P. Ghosh, Graphene oxide catalyzed one‐pot synthesis of pyrimido [4, 5‐b] quinolinone‐2, 4‐diones and their biological evaluation, ChemistrySelect, 5 (2020) 6514-6525.
[15] S.S. Reddy, M.V.K. Reddy, P.V.G. Reddy, β‐Cyclodextrin in Water: As an Efficient Green Protocol for the Synthesis of Pyrimido [4, 5‐b] quinoline‐diones, ChemistrySelect, 3 (2018) 4283-4288.
[16] A. Gholami, M. Mokhtary, M. Nikpassand, Glycolic acid‐supported cobalt ferrite‐catalyzed one‐pot synthesis of pyrimido [4, 5‐b] quinoline and indenopyrido [2, 3‐d] pyrimidine derivatives, Appl. Organomet. Chem., 34 (2020) e6007.
[17] A. Zare, M. Barzegar, Dicationic ionic liquid grafted with silica-coated nano-Fe 3 O 4 as a novel and efficient catalyst for the preparation of uracil-containing heterocycles, Res. Chem. Intermed., 46 (2020) 3727-3740.
[18] J. Safari, M. Tavakoli, M.A. Ghasemzadeh, A highly effective synthesis of pyrimido [4, 5-b] quinoline-tetraones using H3PW12O40/chitosan/NiCo2O4 as a novel magnetic nanocomposite, Polyhedron, 182 (2020) 114459.
[19] F. Jalili, M. Zarei, M.A. Zolfigol, A. Khazaei, Application of novel metal–organic framework [Zr-UiO-66-PDC-SO 3 H] FeCl 4 in the synthesis of dihydrobenzo [g] pyrimido [4, 5-b] quinoline derivatives, RSC Adv., 12 (2022) 9058-9068.
[20] A. Zare, M. Dianat, A highly efficient and green approach for the synthesis of pyrimido [4, 5-b] quinolines using N, N-diethyl-N-sulfoethanaminium chloride, Zeitschrift für Naturforschung B, 76 (2021) 85-90.
[21] M. Mamaghani, M. Jamali Moghadam, R. Hossein Nia, A facile ZrO 2 nanoparticles catalyzed synthesis of 2-amino-5-arylpyrimido [4, 5-b] quinolinediones, J. Iran. Chem. Soc., 14 (2017) 395-401.
[22] J.B. Singh, K. Mishra, T. Gupta, R.M. Singh, Copper-catalyzed cascade reaction: synthesis of pyrimido [4, 5-b] quinolinones from 2-chloroquinoline-3-carbonitriles with (aryl) methanamines, New J. Chem., 42 (2018) 3310-3314.
[23] A.R. Moosavi-Zare, H. Goudarziafshar, Z. Bahrami, Nano-[Cu-4C3NSP](Cl) 2 as a new catalyst for the preparation of pyrimido [4, 5-b] quinoline derivatives, Res. Chem. Intermed., (2022) 1-17.
[24] S. Esmaili, A.R. Moosavi-Zare, A. Khazaei, Z. Najafi, Synthesis of Novel Pyrimido [4, 5-b] Quinolines Containing Benzyloxy and 1, 2, 3-Triazole Moieties by DABCO as a Basic Catalyst, ACS omega, 7 (2022) 45314-45324.
[25] L. Edjlali, R.H. Khanamiri, J. Abolhasani, Fe 3 O 4 nano-particles supported on cellulose as an efficient catalyst for the synthesis of pyrimido [4, 5-b] quinolines in water, Monatshefte für Chemie-Chemical Monthly, 146 (2015) 1339-1342.
[26] N.A. Hassan, M.I. Hegab, F. Abdel‐Motti, S. Hebah, F. Abdel‐Megeid, A. Hashem, Three‐component, one‐pot synthesis of pyrimido [4, 5‐b]‐quinoline and pyrido [2, 3‐d] pyrimidine derivatives, J. Heterocycl. Chem., 44 (2007) 775-782.
[27] G.K. Verma, K. Raghuvanshi, R. Kumar, M.S. Singh, An efficient one-pot three-component synthesis of functionalized pyrimido [4, 5-b] quinolines and indeno fused pyrido [2, 3-d] pyrimidines in water, Tetrahedron Lett., 53 (2012) 399-402.
[28] S.J. Ji, S.N. Ni, F. Yang, J.W. Shi, G.L. Dou, X.Y. Li, X.S. Wang, D.Q. Shi, An Efficient synthesis of pyrimido [4, 5‐b] quinoline and indeno [2′, 1′: 5, 6] pyrido [2, 3‐d] pyrimidine derivatives via multicomponent reactions in ionic liquid, J. Heterocycl. Chem., 45 (2008) 693-702.
[29] K. Mohammadi, F. Shirini, A. Yahyazadeh, 1, 3-Disulfonic acid imidazolium hydrogen sulfate: a reusable and efficient ionic liquid for the one-pot multi-component synthesis of pyrimido [4, 5-b] quinoline derivatives, RSC Adv., 5 (2015) 23586-23590.
[30] K. Tabatabaeian, A.F. Shojaei, F. Shirini, S.Z. Hejazi, M. Rassa, A green multicomponent synthesis of bioactive pyrimido [4, 5-b] quinoline derivatives as antibacterial agents in water catalyzed by RuCl3· xH2O, Chin. Chem. Lett., 25 (2014) 308-312.
[31] S. Abdolmohammadi, S. Balalaie, M. Barari, F. Rominger, Three-component green reaction of arylaldehydes, 6-amino-1, 3-dimethyluracil and active methylene compounds catalyzed by Zr (HSO4) 4 under solvent-free conditions, Combinatorial Chem. High Throughput Screening, 16 (2013) 150-159.
[32] D. Li, R.B. Kaner, Graphene-based materials, Science, 320 (2008) 1170-1171.
[33] C.e.N.e.R. Rao, A.e.K. Sood, K.e.S. Subrahmanyam, A. Govindaraj, Graphene: the new two‐dimensional nanomaterial, Angew. Chem. Int. Ed., 48 (2009) 7752-7777.
[34] C. Rao, A. Sood, R. Voggu, K. Subrahmanyam, Some novel attributes of graphene, The Journal of Physical Chemistry Letters, 1 (2010) 572-580.
[35] F. Gao, S. Zhang, Q. Lv, B. Yu, Recent advances in graphene oxide catalyzed organic transformations, Chin. Chem. Lett., 33 (2022) 2354-2362.
[36] S. Guo, S. Garaj, A. Bianco, C. Ménard-Moyon, Controlling covalent chemistry on graphene oxide, Nature Reviews Physics, 4 (2022) 247-262.
[37] A. Jiříčková, O. Jankovský, Z. Sofer, D. Sedmidubský, Synthesis and applications of graphene oxide, Materials, 15 (2022) 920.
[38] M. Verma, I. Lee, J. Oh, V. Kumar, H. Kim, Synthesis of EDTA-functionalized graphene oxide-chitosan nanocomposite for simultaneous removal of inorganic and organic pollutants from complex wastewater, Chemosphere, 287 (2022) 132385.
[39] A.H. Cahyana, A.R. Liandi, M. Maghdalena, R.T. Yunarti, T.P. Wendari, Magnetically separable Fe3O4/graphene oxide nanocomposite: an efficient heterogenous catalyst for spirooxindole derivatives synthesis, Ceram. Int., 48 (2022) 18316-18323.
[40] P. Kumar, V. Tomar, D. Kumar, R.K. Joshi, M. Nemiwal, Magnetically active iron oxide nanoparticles for catalysis of organic transformations: A review, Tetrahedron, (2022) 132641.
[41] M. Mirza-Aghayan, M. Mohammadi, R. Boukherroub, Synthesis and characterization of palladium nanoparticles immobilized on graphene oxide functionalized with triethylenetetramine or 2, 6-diaminopyridine and application for the Suzuki cross-coupling reaction, J. Organomet. Chem., 957 (2022) 122160.
[42] S.F. Adil, M. Ashraf, M. Khan, M.E. Assal, M.R. Shaik, M. Kuniyil, A. Al‐Warthan, M.R.H. Siddiqui, W. Tremel, M.N. Tahir, Advances in graphene/inorganic nanoparticle composites for catalytic applications, The Chemical Record, 22 (2022) e202100274.
[43] N. Nandal, P.K. Prajapati, B.M. Abraham, S.L. Jain, CO2 to ethanol: A selective photoelectrochemical conversion using a ternary composite consisting of graphene oxide/copper oxide and a copper-based metal-organic framework, Electrochim. Acta, 404 (2022) 139612.
[44] S.H. Gebre, Recent developments of supported and magnetic nanocatalysts for organic transformations: an up-to-date review, Applied Nanoscience, 13 (2023) 15-63.
[45] W. Li, A. Xu, Y. Zhang, Y. Yu, Z. Liu, Y. Qin, Metal-organic framework-derived Mn3O4 nanostructure on reduced graphene oxide as high-performance supercapacitor electrodes, J. Alloys Compd., 897 (2022) 162640.
[46] H.-M. Song, L.-J. Zhu, Y. Wang, G. Wang, Z.-X. Zeng, Fe-based Prussian blue cubes confined in graphene oxide nanosheets for the catalytic degradation of dyes in wastewater, Sep. Purif. Technol., 288 (2022) 120676.
[47] S.M.-G. Yek, M. Nasrollahzadeh, D. Azarifar, A. Rostami-Vartooni, M. Ghaemi, M. Shokouhimehr, Grafting Schiff base Cu (II) complex on magnetic graphene oxide as an efficient recyclable catalyst for the synthesis of 4H-pyrano [2, 3-b] pyridine-3-carboxylate derivatives, Mater. Chem. Phys., 284 (2022) 126053.
[48] O. Mohammadi, M. Golestanzadeh, M. Abdouss, Recent advances in organic reactions catalyzed by graphene oxide and sulfonated graphene as heterogeneous nanocatalysts: a review, New J. Chem., 41 (2017) 11471-11497.
[49] H. Naeimi, M. Golestanzadeh, Microwave-assisted synthesis of 6,6′-(aryl(alkyl)methylene)bis(2,4-dialkylphenol) antioxidants catalyzed by multi-sulfonated reduced graphene oxide nanosheets in water, New J. Chem., 39 (2015) 2697-2710.
[50] H. Naeimi, M. Golestanzadeh, Highly sulfonated graphene and graphene oxide nanosheets as heterogeneous nanocatalysts in green synthesis of bisphenolic antioxidants under solvent free conditions, RSC Adv., 4 (2014) 56475-56488.
[51] R. Fareghi-Alamdari, M. Golestanzadeh, O. Bagheri, meso-Tetrakis[4-(methoxycarbonyl)phenyl]porphyrinatopalladium(ii) supported on graphene oxide nanosheets (Pd(ii)-TMCPP-GO): synthesis and catalytic activity, RSC Adv., 6 (2016) 108755-108767.
[52] M. Golestanzadeh, H. Naeimi, Z. Zahraie, Synthesis and antioxidant activity of star-shape phenolic antioxidants catalyzed by acidic nanocatalyst based on reduced graphene oxide, Mater. Sci. Eng., C, 71 (2017) 709-717.
[53] F. Panahi, R. Fareghi-Alamdari, S. Khajeh Dangolani, A. Khalafi-Nezhad, M. Golestanzadeh, Graphene Grafted N-Methyl-4-pyridinamine (G-NMPA): An Efficient Heterogeneous Organocatalyst for Acetylation of Alcohols, ChemistrySelect, 2 (2017) 474-479.
[54] H. Naeimi, M. Golestanzadeh, Z. Zahraie, Synthesis of potential antioxidants by synergy of ultrasound and acidic graphene nanosheets as catalyst in water, Int. J. Biol. Macromol., 83 (2016) 345-357.
[55] R. Fareghi-Alamdari, M. Golestanzadeh, F. Agend, N. Zekri, Synthesis, characterization and catalytic activity of sulphonated multi-walled carbon nanotubes as heterogeneous, robust and reusable catalysts for the synthesis of bisphenolic antioxidants under solvent-free conditions, J. Chem. Sci., 125 (2013) 1185-1195.
[56] R. Fareghi-Alamdari, M. Golestanzadeh, F. Agend, N. Zekri, Regiospecific, one-pot, and pseudo-five-component synthesis of 6,6′-(arylmethylene)bis(2-(tert-butyl)4-methylphenol) antioxidants using highly sulfonated multi-walled carbon nanotubes under solvent-free conditions, Can. J. Chem., 91 (2013) 982-991.
[57] M. Golestanzadeh, H. Naeimi, Z. Zahraie, Metal–free GO-SiPr-SO3H Nanosheets Catalyzed Ultrasound Promoted One–pot Synthesis of Star-Shape Phenolic Compounds in Water and Study of Their In–vitro Antimicrobial Activities, ChemistrySelect, 1 (2016) 6490-6498.
[58] M. Golestanzadeh, H. Naeimi, Palladium decorated on a new dendritic complex with nitrogen ligation grafted to graphene oxide: fabrication, characterization, and catalytic application, RSC Adv., 9 (2019) 27560-27573.
[59] R. Fareghi-Alamdari, M. Golestanzadeh, N. Zekri, Solvent-free synthesis of trisphenols as starting precursors for the synthesis of calix[4]arenes using sulfonated multi-walled carbon nanotubes, New J. Chem., 40 (2016) 3400-3412.
[60] R. Fareghi-Alamdari, M. Golestanzadeh, N. Zekri, Z. Mavedatpoor, Multi SO3H supported on carbon nanotubes: a practical, reusable, and regioselective catalysts for the tert-butylation of p-cresol under solvent-free conditions, J. Iran. Chem. Soc., 12 (2015) 537-549.
[61] M. Golestanzadeh, H. Naeimi, Effect of Confined Spaces in the Catalytic Activity of 1D and 2D Heterogeneous Carbon-Based Catalysts for Synthesis of 1,3,5-Triarylbenzenes: RGO-SO3H vs. MWCNTs-SO3H, ChemistrySelect, 4 (2019) 1909-1921.
[62] O. Mohammadi, M. Golestanzadeh, M. Abdouss, Metal-Free and Ultrasound-Assisted C–C and O-Si (O-Protected) Bond Formation in Cyanosilylation of Aldehydes with TMSCN Catalyzed by Functionalized Graphene Oxide Derivatives, ChemistrySelect, 3 (2018) 12131-12138.
[63] X. Tang, S. Lv, K. Jiang, G. Zhou, X. Liu, Recent development of ionic liquid-based electrolytes in lithium-ion batteries, J. Power Sources, 542 (2022) 231792.
[64] C.S. Buettner, A. Cognigni, C. Schroeder, K. Bica-Schröder, Surface-active ionic liquids: A review, J. Mol. Liq., 347 (2022) 118160.
[65] T.M. Dhameliya, P.R. Nagar, K.A. Bhakhar, H.R. Jivani, B.J. Shah, K.M. Patel, V.S. Patel, A.H. Soni, L.P. Joshi, N.D. Gajjar, Recent advancements in applications of ionic liquids in synthetic construction of heterocyclic scaffolds: A spotlight, J. Mol. Liq., 348 (2022) 118329.
[66] M. Kazemi, L. Shiri, Ionic liquid immobilized on magnetic nanoparticles: a nice and efficient catalytic strategy in synthesis of heterocycles, Journal of Synthetic Chemistry, 1 (2022) 1-7.
[67] G. Li, S. Dong, P. Fu, Q. Yue, Y. Zhou, J. Wang, Synthesis of porous poly (ionic liquid) s for chemical CO 2 fixation with epoxides, Green Chem., 24 (2022) 3433-3460.
[68] A.H. Ali, M.Y. Saleh, K.A. Owaid, Mild Synthesis, Characterization, and Application of some Polythioester Polymers Catalyzed by Cetrimide Ionic Liquid as a Green and Eco-Friendly Phase-Transfer Catalyst, Iran. J. Catal., 13 (2023) 73-83.
[69] A.M. Hamdoon, M.Y. Saleh, S.M. Saied, Synthesis & Biological Evaluation of Novel Series of Benzo [f] indazole Derivatives, Egyptian Journal of Chemistry, 65 (2022) 305-312.
[70] S.M. Saied, M.Y. Saleh, A.M. Hamdoon, Multicomponent Synthesis of Tetrahydrobenzo [a] xanthene and Tetrahydrobenzo [a] acridine Derivatives using Sulfonated Multi-Walled Carbon Nanotubes as Heterogeneous Nanocatalysts, Iran. J. Catal., 12 (2022) 189-205.
[71] N. Zaaba, K. Foo, U. Hashim, S. Tan, W.-W. Liu, C. Voon, Synthesis of graphene oxide using modified hummers method: solvent influence, Procedia engineering, 184 (2017) 469-477.
[72] K. Prendergast, T.G. Spiro, Core expansion, ruffling, and doming effects on metalloporphyrin vibrational frequencies, J. Am. Chem. Soc., 114 (1992) 3793-3801.
[73] D. Long, W. Li, L. Ling, J. Miyawaki, I. Mochida, S.-H. Yoon, Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide, Langmuir, 26 (2010) 16096-16102.
[74] S.-J. Ji, S.-N. Ni, F. Yang, J.-W. Shi, G.-L. Dou, X.-Y. Li, X.-S. Wang, D.-Q. Shi, An Efficient synthesis of pyrimido[4,5-b]quinoline and indeno[2′,1′:5,6]pyrido[2,3-d]pyrimidine derivatives via multicomponent reactions in ionic liquid, J. Heterocycl. Chem., 45 (2008) 693-702.
[75] S.C. Azimi, Cellulose sulfuric acid catalyzed multicomponent reaction for efficient synthesis of pyrimido and pyrazolo[4,5-b]quinolines under solvent-free conditions, Iran. J. Catal., 4 (2014) 113-120.
[76] J.M. Khurana, A. Chaudhary, B. Nand, A. Lumb, Aqua mediated indium(III) chloride catalyzed synthesis of fused pyrimidines and pyrazoles, Tetrahedron Lett., 53 (2012) 3018-3022.
[77] G.K. Verma, K. Raghuvanshi, R. Kumar, M.S. Singh, An efficient one-pot three-component synthesis of functionalized pyrimido[4,5-b]quinolines and indeno fused pyrido[2,3-d]pyrimidines in water, Tetrahedron Lett., 53 (2012) 399-402.
[78] F. Nemati, R. Saeedirad, Nano-Fe3O4 encapsulated-silica particles bearing sulfonic acid groups as a magnetically separable catalyst for green and efficient synthesis of functionalized pyrimido[4,5-b]quinolines and indeno fused pyrido[2,3-d]pyrimidines in water, Chin. Chem. Lett., 24 (2013) 370-372.
[79] K. Mohammadi, F. Shirini, A. Yahyazadeh, 1,3-Disulfonic acid imidazolium hydrogen sulfate: a reusable and efficient ionic liquid for the one-pot multi-component synthesis of pyrimido[4,5-b]quinoline derivatives, RSC Adv., 5 (2015) 23586-23590.
[80] F. Shirini, M.S.N. Langarudi, N. Daneshvar, M. Mashhadinezhad, N. Nabinia, Preparation of a new DABCO-based ionic liquid and investigation on its application in the synthesis of benzimidazoquinazolinone and pyrimido[4,5-b]-quinoline derivatives, J. Mol. Liq., 243 (2017) 302-312.