SOLVING NONLINEAR KLEIN-GORDON EQUATION WITH A QUADRATIC NONLINEAR TERM USING HOMOTOPY ANALYSIS METHOD
Subject Areas : Operation ResearchH. جعفری 1 , م. سعیدی 2 , م. عرب فیروزجایی 3
1 - Department of Mathematics and Computer Science, University of Mazandaran, P. O. Box 47416-1467, Babolsar, Iran.
2 - Department of Mathematics and Computer Science, University of Mazandaran, P. O. Box 47416-1467, Babolsar, Iran.
3 - Department of Mathematics and Computer Science, University of Mazandaran, P. O. Box 47416-1467, Babolsar, Iran.
Keywords:
Abstract :
[1] Ayub M., Rasheed A., and Hayat T. Exact flow of a third grade fluid past a porous plate using homotopy analysis method, Int. J. Eng. Sci.,41, 2091-2103, 2003.
[2] Adomian G. Solving frontier problems of physics: the decomposition method, Dordrecht, Kluwer Academic Publishers,1994.
[3] Adomian G., and Rach R., On the solution of algebraic equations by the decomposition method, Math. Anal. Appl, 105,141-166, 1985.
[4] Hayat T., Khan M., and Ayub M. On the explicit analytic solutions of an Oldroyd 6-constant fluid, Int. J. Eng. Sci., 42, 123-135, 2004.
[5] Hayat T., Khan M., and Ayub M. Couette and Poiseuille flows of an Oldroyd 6-constant fluid with magnetic field, J. Math. Anal. Appl., 298, 225-244, 2004.
[6] Hayat T., Khan M., and Asghar S. Homotopy analysis of MHD flows of an Oldroyd 8- constant fluid, Acta Mech., 168, 213-232, 2004.
[7] Hayat T., and Khan M., Homotopy solutions for a generalized second-grade fluid past a porous plate, Nonlinear Dyn., 42, 395-405, 2005.
[8] Hayat T., Khan M., and Ayub M., On non-linear flows with slip boundary condition, ZAMP, 56, 1012-1029, 2005.
[9] He J. H., A coupling method of homotopy technique and perturbation technique for nonlinear problems, Int. J. Nonlinear Mech., 35(1), 37-43, 2000.
[10] He J. H., Homotopy perturbation method for solving boundary value problems, Phys. Lett. A, 350(12), 87-88, 2006.
[11] He J.H., Some asymptotic methods for strongly nonlinear equations, Int. J. Mod. Phys. B, 20(10), 1141-1199, 2006.
[12] Chandra Basak K., Chandra Ray P., and Kumar Bera R., Solution of non-linear Klein- Gordon equation with a quadratic non-linear term by Adomian decomposition method, Communications in Nonlinear Science and Numerical Simulation, 2007, 14( 3), 718-723, 2009.
[13] Liao S. J., The proposed homotopy analysis technique for the solution of nonlinear problems, Ph.D. Thesis, Shanghai Jiao Tong University, 1992.
[14] Liao SJ., An approximate solution technique which does not depend upon small parameters: a special example, Int. J. Nonlinear Mech., 30, 37180, 1995.
[15] Liao SJ., An approximate solution technique which does not depend upon small parameters (Part 2): an application in fluid mechanics, Int. J. Nonlinear Mech., 32(5), 815-822, 1997.
[16] Liao SJ., An explicit totally analytic approximation of Blasius viscous flow problems, Int. J. Non-Linear Mech., 34(4), 75-78, 1999.
[17] Liao SJ., Beyond perturbation: introduction to the homotopy analysis method, CRC Press, Boca Raton: Chapman & Hall, 2003.
[18] Liao SJ., On the homotopy anaylsis method for nonlinear problems, Appl. Math. Comput. , 147, 499-513, 2004.
[19] Liao SJ., Comparison between the homotopy analysis method and homotopy perturbation method, Appl. Math. Comput., 169, 1186-1194, 2005.
[20] Liao SJ., A new branch of solutions of boundary-layer ¤ows over an impermeable stretched plate, Int. J. Heat Mass Transfer, 48, 2529-2539, 2005.
[21] Liao SJ., and Pop I., Explicit analytic solution for similarity boundary layer equations, Int. J. Heat Mass Transfer, 47, 75-78, 2004.