چند شکلیهای DNA در جایگاههای ژن کاندیدا و ارتباط آنها با صفات تولید شیر در گاومیش مورا (Bubalus bubalis)
Subject Areas : Camelدی.اس. کاله 1 , بی.آر. یاداو 2 , جی. پراساد 3
1 - Livestock Genome Analysis Laboratory, National Dairy Research Institute, Karnal, 132001, Haryana State, India
2 - Livestock Genome Analysis Laboratory, National Dairy Research Institute, Karnal, 132001, Haryana State, India
3 - Department of Animal Genetics and Breeding, Faculty of Veterinary Science, Allahabad Agricultural Institute Deemed University, Allahabad, 211007, Utter Pradesh, India
Keywords: PCR-SSCP, لپتین, تولید شیر, بوتیروفیلین, مونو آسیل گلیسرول ترانسفراز 2 / دی آسیل گلیسرول ترانسفراز 2, گاومیش مورا,
Abstract :
چند شکلیDNA در داخل ژنهای دی آسیل گلیسرول ترانسفراز 2 (DGAT2) / مونو آسیل گلیسرول ترانسفراز 2 (MOGAT2)، لپتین و بوتیروفیلین با استفاده از واکنش زنجیرهای پلیمراز-چند شکلی ترکیب فضایی تک رشتهای (PCR-SSCP) در گاومیش مورا تجزیه و تحلیل شد. آنالیز SSCPاز بخش ژنی تکثیر شده اکسون 5 MOGAT2، اکسون 3 لپتیتن و اینترون 1 ژن بوتیروفیلین الگوهای مختلفی از قبیل A، B و C را با فراوانیهای ژن (49/0 A=، 36/0 B=و 15/0 C=) در 53، (38/0 A= و 62/0 B=) در 65 و (6/0 A=، 31/0 B=و 09/0 C=) در 55 رأس گاومیش مورا را به ترتیب برای هر یک از ژنهای کاندیدا آشکار نمود. پیآمد توالی یابی DNA، SSCP یک چند شکلی تک نوکلئوتیدی (SNP) را برای (c.193T>C) در ژن MOGAT2، یک SNP را برای (c.25T>C) در ژن لپتین و یک SNP را برای (c.184C>T>G) در ژن بوتیروفیلین آشکار نمود. مطالعه همبستگیها با استفاده از روش GLM، مشخص نمود که گاومیشهای مورا با ژنوتیپهای (SNP) (c.193T>C) (MOGAT2) و (c.25T>C) برای ژن لپتین در رابطه با صفات مرتبط با تولید شیر (شامل مقدار تولید شیر، درصد چربی و درصد SNF) از نظر آماری متفاوت نبودند (05/0P>). به هرحال، آنالیز آماری برای همبستگیها مشخص نمود که ژنوتیپ BTI1 SSCP به طور معنیداری با مقدار تولید شیر 350 روز همبسته بود (05/0P≤). گاومیشهای مورای با ژنوتیپهای BTI1BB به ترتیب 93/683 و 320 کیلوگرم تولید شیر بیشتری در مقایسه با ژنوتیپهای BTI1AA و BTI1CC داشتند. همبستگی مثبت مشاهده شده برای چند شکلی SSCP بوتیروفیلین با تولید شیر، به منظور انتخاب، استراتژیهای اصلاحی و بهبود ژنتیکی گاومیشها برای تولید شیر مفید خواهد بود.
Block S.S., Butler W.R., Ehrhardt R.A., Bell A.W., Van Amburgh M.E. and Boisclair Y.R. (2001). Decreased concentration of plasma leptin in periparturient dairy cows is caused by negative energy balance. J. Endocrinol. 171, 339-348.
BorgheseA.M.M. (2005). Buffalo Production and Research.FAO Rome, Regional Office for Europe.
Cases S., Smith S.J., Zheng Y.W., Myers H.M., Lear S.R., Sande E., Novak S., Collins C., Welch C.B., Lusis A.J., Erickson S.K. and Farese R.V. (1998). Identification of a gene encoding an acyl-CoA: diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc. Nat. Acad. Sci. 95, 13018-13023.
Chamberlain A.J., Hayes B.J., Savin K., Bolormaa S., McPartlan H.C., Bowman P.J., Van Der Jagt C., MacEachern S. and Goddard M.E. (2012). Validation of single nucleotide polymorphisms associated with milk production traits in dairy cattle. J. Dairy Sci. 95(2), 864-875.
Clamp P.A., Feltes R., Shalvevet D., Beever J.E., Atac E. and Schook L.B. (1993). Linkage relationship between ALPL, EN01, GPI, PGD, TGFB1 on porcine chromosome 6. Genomics. 17, 324-329.
Di Meo G.P., Perucatti A., Uboldi C., Roperto S., Incarnato D., Roperto F., Williams J., Eggen A., Ferretti L. and Iannuzzi L. (2005). Comparative mapping of the fragile histidine triad (FHIT) gene in cattle, river buffalo, sheep and goat by FISH and assignment to BTA22 by RH-mapping: a comparison with HSA3.Anim. Genet. 36(4), 363-364.
Franke W.W., Heid H.W., Grund C., Winter S., Freudenstein C., Schmid E., Jarasch E.D. and Keenan T.W. (1981). Antibodies to the major insoluble milk fat globule membrane associated protein: specific location in apical regions of lactating epithelial cells. J. Cell. Biol. 89, 485-494.
Gallagher D.S.Jr. and Womack J.E. (1992). Chromosome conservation in the Bovidae.J. Hered. 83(4), 287-298.
Jang G.W., Cho K.H., Kim T.H., Oh S.J., Cheong I.C. and Lee K.J. (2005). Association of candidate genes with production traits in Korean dairy proven and young bulls. Asian-australas J. Anim. Sci. 18, 165-169.
Liefers S.C., Veerkamp R.F., Te Pas M.F., Delavaud C., Chilliard Y., Platje M. and Van der Lende T. (2005). Leptin promoter mutations affect leptin levels and performance traits in dairy cows. Anim. Genet. 36(2), 111-118.
Oikonomou G., Michailidis G., Kougioumtzis A., Avdi M. and Banos G. (2011). Effect of polymorphisms at the STAT5A and FGF2 gene loci on reproduction, milk yield and lameness of Holstein cows. Res. Vet. Sci. 91, 235-239.
Orita M., Suzuki Y., Sekiya T. and Hayashi K. (1989). Rapid and sensitive detection of point mutation and DNA polymorphisms using polymerase chain reaction. Genomics. 5, 874-879.
RozenS. and Skaletsky H.J. (1998). Primer 3. Code. available at: http://www.genome.wi.mit.edu/gnome_software/other/primer3.htm.
Sambroo kJ. and Russel D.W. (2000). Molecular Cloning: A Laboratory Manual.Cold Spring Harbour, New York.
Vallinoto M., Schneider M.P.C., Silva A., Iannuzzi L. and Brenig B. (2004). Molecular cloning and analysis of the swamp and river buffalo leptin gene. Anim. Genet. 35, 462-463.
Winter A., Eckeveld Van M., Bininda Emonds O.R.P., Habermann F.A. and Fries R. (2003). Genomic organization of the DGAT2 / MOGAT gene family in cattle (Bos taurus) and other mammals. Cytogen. Genom. Res. 102, 42-47.
Winter A., Kramer W., Werner F.A., Kollers S., Kata S., Durstewitz G., Buitkamp J., Womack J.E., Thaller G. and Fries R. (2002). Association of a lysine-232 / alanine polymorphism in a bovine gene encoding acyl-CoA: diacylglycerol acyltransferase (DGAT1) with variation at a quantitative trait locus for milk fat content. Proc. Nat. Acad. Sci. 20, 20-27.